Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Operational Power Efficiency

Archived Abstract of Former PSC Researcher

Lynch, J.P., A. Sundararajan, K.H. Law, A.S. Kiremidjian, and E. Carryer. 2004. "Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Operational Power Efficiency." Smart Materials and Structures, 13(4): 800-810.

A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.

DOI:10.1088/0964-1726/13/4/018 (Full Text)

Browse | Search : All Pubs | Next