Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stephenson says homophobia among gay men raises risk of intimate partner violence

Frey says having more immigrants with higher birth rates fills need in the US

Inglehart's work on the rise of populism cited in NYT

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Operational Power Efficiency

Archived Abstract of Former PSC Researcher

Lynch, J.P., A. Sundararajan, K.H. Law, A.S. Kiremidjian, and E. Carryer. 2004. "Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Operational Power Efficiency." Smart Materials and Structures, 13(4): 800-810.

A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.

DOI:10.1088/0964-1726/13/4/018 (Full Text)

Browse | Search : All Pubs | Next