Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Geronimus says black-white differences in mortality "help silence black voices in the electorate"

Do universities need more conservative thinkers?

Starr critical of risk assessment scores for sentencing

Highlights

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Comparing Personal Trajectories and Drawing Causal Inferences From Longitudinal Data

Archived Abstract of Former PSC Researcher

Raudenbush, Stephen W. 2001. "Comparing Personal Trajectories and Drawing Causal Inferences From Longitudinal Data." Annual Review of Psychology, 52 : 501-525.

This review considers statistical analysis of data from studies that obtain repeated measures on each of many participants. Such studies aim to describe the average change in populations and to illuminate individual differences in trajectories of change. A person-specific model for the trajectory of each participant is viewed as the foundation of any analysis having these aims. A second, between-person model describes how persons vary in their trajectories. This two-stage modeling framework is common to a variety of popular analytic approaches variously labeled hierarchical models, multilevel models, latent growth models, and random coefficient models. Selected published examples reveal how the approach can be flexibly adapted to represent development in domains as diverse as vocabulary growth in early childhood, academic learning, and antisocial propensity during adolescence. The review then considers the problem of drawing causal inferences from repeated measures data.

Browse | Search : All Pubs | Next