Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Singh discusses her research in India on infertility

Johnston concerned declines in teen smoking threatened by e-cigarettes

Johnston says decreasing marijuana use among teens not easily explained

Highlights

Apply for 2-year NICHD Postdoctoral Fellowships that begin September 2015

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Next Brown Bag

Monday, Jan 12
Filiz Garip, Changing Dynamics of Mexico-U.S. Migration

The Ecological Impact of Historical Land Use Patterns in the Great Plains: A Methodological Assessment

Publication Abstract

Parton, W.J., Myron Gutmann, S.A. Williams, M. Easter, and D. Ojima. 2005. "The Ecological Impact of Historical Land Use Patterns in the Great Plains: A Methodological Assessment." Ecological Applications, 15(6), 1915-1928.

This paper demonstrates a method for using historical county-level agricultural land-use data to drive an ecosystem model. Four case study counties from the U.S. Great Plains during the 19th and 20th centuries are used to represent different agroecosystems. The paper also examines the sensitivity of the estimates of county-level ecosystem properties when using different levels of detail in the land-use histories. Using weighted averages of multiple-model runs for grassland, dryland cropping, and irrigated cropping improved prediction over a simple, single-run approach that models the prevailing land use. Model runs with the same land use and environment generally reach similar levels of soil carbon and nitrogen mineralization after 50 years, no matter when they began, with faster convergence for irrigated cropland. Model results show that cultivation of grasslands results in large losses of soil carbon and an increase in soil nitrogen mineralization for the first 20–30 years of cultivation, which is followed by low soil carbon loss and nitrogen mineralization 50 years after cultivation started. The recently observed increase in irrigated agriculture in the central and northern Great Plains (2.7 million ha) has resulted in a net carbon storage of 21.3 Tg carbon, while irrigated cotton production has resulted in a net loss of 12.1 Tg carbon.

DOI:10.1890/04-1392 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next