Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

The Ecological Impact of Historical Land Use Patterns in the Great Plains: A Methodological Assessment

Publication Abstract

Parton, W.J., Myron Gutmann, S.A. Williams, M. Easter, and D. Ojima. 2005. "The Ecological Impact of Historical Land Use Patterns in the Great Plains: A Methodological Assessment." Ecological Applications, 15(6), 1915-1928.

This paper demonstrates a method for using historical county-level agricultural land-use data to drive an ecosystem model. Four case study counties from the U.S. Great Plains during the 19th and 20th centuries are used to represent different agroecosystems. The paper also examines the sensitivity of the estimates of county-level ecosystem properties when using different levels of detail in the land-use histories. Using weighted averages of multiple-model runs for grassland, dryland cropping, and irrigated cropping improved prediction over a simple, single-run approach that models the prevailing land use. Model runs with the same land use and environment generally reach similar levels of soil carbon and nitrogen mineralization after 50 years, no matter when they began, with faster convergence for irrigated cropland. Model results show that cultivation of grasslands results in large losses of soil carbon and an increase in soil nitrogen mineralization for the first 20–30 years of cultivation, which is followed by low soil carbon loss and nitrogen mineralization 50 years after cultivation started. The recently observed increase in irrigated agriculture in the central and northern Great Plains (2.7 million ha) has resulted in a net carbon storage of 21.3 Tg carbon, while irrigated cotton production has resulted in a net loss of 12.1 Tg carbon.

DOI:10.1890/04-1392 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next