Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Daniel G. Brown photo

Path Dependence and the Validation of Agent-Based Spatial Models of Land-Use

Publication Abstract

Brown, Daniel G., S.E. Page, R.L. Riolo, M. Zellner, and W. Rand. 2005. "Path Dependence and the Validation of Agent-Based Spatial Models of Land-Use." International Journal of Geographical Information Science, 19(2): 153-174.

In this paper, we identify two distinct notions of accuracy of land-use models and highlight a tension between them. A model can have predictive accuracy: its predicted land-use pattern can be highly correlated with the actual land-use pattern. A model can also have process accuracy: the process by which locations or land-use patterns rare,determined can be consistent with real world processes. To balance these two potentially conflicting motivations, we introduce the concept of the invariant region, i.e., the area where land-use type is almost certain, and thus path independent; and the variant region, i.e., the area where land use depends;on a particular series of events, and is thus path dependent. We demonstrate our methods using an agent-based land-use model and using multi-temporal land-use data collected for Washtenaw County, Michigan, USA. The results indicate that, using the methods we describe, researchers can improve their ability to communicate how well their model performs, the situations or instances in which it,does not perform well, and the cases in which it is relatively unlikely to predict well because of either path dependence or stochastic uncertainty.

DOI:10.1080/13658810410001713399 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next