Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Shapiro says Americans' low spending reflects "cruel lesson" about the dangers of debt

Highlights

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Using Neural Nets and GIS to Forecast Land Use Changes: A Land Transformation Model

Publication Abstract

Pijanowski, B.C., Daniel G. Brown, B.A. Shellito, and G.A. Manik. 2002. "Using Neural Nets and GIS to Forecast Land Use Changes: A Land Transformation Model." Computers, Environment and Urban Systems, 26(6): 553-575.

The Land Transformation Model (LTM), which couples geographic information systems (GIS) with artificial neural networks (ANNs) to forecast land use changes, is presented here. A variety of social, political, and environmental factors contribute to the model's predictor variables of land use change. This paper presents a version of the LTM parameterized for Michigan's Grand Traverse Bay Watershed and explores how factors such as roads, highways, residential streets, rivers, Great Lakes coastlines, recreational facilities, inland lakes, agricultural density, and quality of views can influence urbanization patterns in this coastal watershed. ANNs are used to learn the patterns of development in the region and test the predictive capacity of the model, while GIS is used to develop the spatial, predictor drivers and perform spatial analysis on the results. The predictive ability of the model improved at larger scales when assessed using a moving scalable window metric. Finally, the individual contribution of each predictor variable was examined and shown to vary across spatial scales. At the smallest scales, quality views were the strongest predictor variable. We interpreted the multi-scale influences of land use change, illustrating the relative influences of site (e.g. quality of views, residential streets) and situation (e.g. highways and county roads) variables at different scales.

DOI:10.1016/S0198-9715(01)00015-1 (Full Text)

Browse | Search : All Pubs | Next