Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Kruger says reports of phantom mobile phone ringing/vibrating more common among anxious

Stafford says too early to say whether stock market declines will curtail Americans' spending

Eisenberg says many colleges now train campus personnel to spot and refer troubled college students

Highlights

Call for papers: Conference on Integrating Genetics and the Social Sciences, Oct 21-22, 2016, CU-Boulder

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

Using Neural Nets and GIS to Forecast Land Use Changes: A Land Transformation Model

Publication Abstract

Pijanowski, B.C., Daniel G. Brown, B.A. Shellito, and G.A. Manik. 2002. "Using Neural Nets and GIS to Forecast Land Use Changes: A Land Transformation Model." Computers, Environment and Urban Systems, 26(6): 553-575.

The Land Transformation Model (LTM), which couples geographic information systems (GIS) with artificial neural networks (ANNs) to forecast land use changes, is presented here. A variety of social, political, and environmental factors contribute to the model's predictor variables of land use change. This paper presents a version of the LTM parameterized for Michigan's Grand Traverse Bay Watershed and explores how factors such as roads, highways, residential streets, rivers, Great Lakes coastlines, recreational facilities, inland lakes, agricultural density, and quality of views can influence urbanization patterns in this coastal watershed. ANNs are used to learn the patterns of development in the region and test the predictive capacity of the model, while GIS is used to develop the spatial, predictor drivers and perform spatial analysis on the results. The predictive ability of the model improved at larger scales when assessed using a moving scalable window metric. Finally, the individual contribution of each predictor variable was examined and shown to vary across spatial scales. At the smallest scales, quality views were the strongest predictor variable. We interpreted the multi-scale influences of land use change, illustrating the relative influences of site (e.g. quality of views, residential streets) and situation (e.g. highways and county roads) variables at different scales.

DOI:10.1016/S0198-9715(01)00015-1 (Full Text)

Browse | Search : All Pubs | Next