Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

H. Luke Shaefer and colleagues argue for a universal child allowance

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

Next Brown Bag

Mon, April 10, 2017, noon:
Elizabeth Bruch

Using Neural Nets and GIS to Forecast Land Use Changes: A Land Transformation Model

Publication Abstract

Pijanowski, B.C., Daniel G. Brown, B.A. Shellito, and G.A. Manik. 2002. "Using Neural Nets and GIS to Forecast Land Use Changes: A Land Transformation Model." Computers, Environment and Urban Systems, 26(6): 553-575.

The Land Transformation Model (LTM), which couples geographic information systems (GIS) with artificial neural networks (ANNs) to forecast land use changes, is presented here. A variety of social, political, and environmental factors contribute to the model's predictor variables of land use change. This paper presents a version of the LTM parameterized for Michigan's Grand Traverse Bay Watershed and explores how factors such as roads, highways, residential streets, rivers, Great Lakes coastlines, recreational facilities, inland lakes, agricultural density, and quality of views can influence urbanization patterns in this coastal watershed. ANNs are used to learn the patterns of development in the region and test the predictive capacity of the model, while GIS is used to develop the spatial, predictor drivers and perform spatial analysis on the results. The predictive ability of the model improved at larger scales when assessed using a moving scalable window metric. Finally, the individual contribution of each predictor variable was examined and shown to vary across spatial scales. At the smallest scales, quality views were the strongest predictor variable. We interpreted the multi-scale influences of land use change, illustrating the relative influences of site (e.g. quality of views, residential streets) and situation (e.g. highways and county roads) variables at different scales.

DOI:10.1016/S0198-9715(01)00015-1 (Full Text)

Browse | Search : All Pubs | Next