Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Shapiro says Americans' low spending reflects "cruel lesson" about the dangers of debt

Highlights

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Exploring complexity in a human-environment system: An agent-based spatial model for multidisciplinary and multiscale integration

Publication Abstract

An, L., M. Linderman, J. Qi, A. Shortridge, and Jianguo Liu. 2005. "Exploring complexity in a human-environment system: An agent-based spatial model for multidisciplinary and multiscale integration." Annals of the Association of American Geographers, 95(1): 54-79.

Traditional approaches to studying human-environment interactions often ignore individual-level information, do not account for complexities, or fail to integrate cross-scale or cross-discipline data and methods, thus, in many situations, resulting in a great loss in predictive or explanatory power. This article reports on the development, implementation, validation, and results of an agent-based spatial model that addresses such issues. Using data from Wolong Nature Reserve for giant pandas (China), the model simulates the impact of the growing rural population on the forests and panda habitat. The households in Wolong follow a traditional rural lifestyle, in which fuelwood consumption has been shown to cause panda habitat degradation. By tracking the life history of individual persons and the dynamics of households, this model equips household agents with "knowledge'' about themselves, other agents, and the environment and allows individual agents to interact with each other and the environment through their activities in accordance with a set of artificial-intelligence rules. The households and environment coevolve over time and space, resulting in macroscopic human and habitat dynamics. The results from the model may have value for understanding the roles of socioeconomic and demographic factors, for identifying particular areas of special concern, and for conservation policy making. In addition to the specific results of the study, the general approach described here may provide researchers with a useful general framework to capture complex human-environment interactions, to incorporate individual-level information, and to help integrate multidisciplinary research efforts, theories, data, and methods across varying spatial and temporal scales.

DOI:10.1111/j.1467-8306.2005.00450.x (Full Text)

Country of focus: China.

Browse | Search : All Pubs | Next