Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Clinton's and Trump's appeal to voters viewed from perspective of Neidert and Lesthaeghe's SDT framework

Stephenson assessing in-home HIV testing and counseling for male couples

Thompson says mass incarceration causes collapse of Detroit neighborhoods

Highlights

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

AAUP reports on faculty compensation by category, affiliation, and academic rank

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data

Publication Abstract

Linderman, M., Jianguo Liu, J. Qi, L. An, Z. Ouyang, J. Yang, and T. Tan. 2004. "Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data." International Journal of Remote Sensing, 25(9): 1685-1700.

Understorey vegetation is a critical component of biodiversity and an essential habitat component for many wildlife species. However, compared to overstorey, information about understorey vegetation distribution is scant, available mainly over small areas or through imprecise large area maps from tedious and time-consuming field surveys. A practical approach to classifying understorey vegetation from remote sensing data is needed for more accurate habitat analyses and biodiversity estimates. As a case study, we mapped the spatial distribution of understorey bamboo in Wolong Nature Reserve (south-western China) using remote sensing data from a leaf-on or growing season. Training on a limited set of ground data and using widely available Landsat TM data as input, a nonlinear artificial neural network achieved a classification accuracy of 80% despite the presence of co-occurring mid-storey and understorey vegetation. These results suggest that the influences of understorey vegetation on remote sensing data are available to practical approaches to classifying understorey vegetation. The success here to map bamboo distribution has important implications for giant panda conservation and provides a good foundation for developing methods to map the spatial distributions of other understorey plant species.

Browse | Search : All Pubs | Next