Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Eisenberg says many colleges now train campus personnel to spot and refer troubled college students

Farley on new strategies for city insolvencies in Michigan

Owen-Smith says universities must demonstrate value of higher education

Highlights

Call for papers: Conference on Integrating Genetics and the Social Sciences, Oct 21-22, 2016, CU-Boulder

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data

Publication Abstract

Linderman, M., Jianguo Liu, J. Qi, L. An, Z. Ouyang, J. Yang, and T. Tan. 2004. "Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data." International Journal of Remote Sensing, 25(9): 1685-1700.

Understorey vegetation is a critical component of biodiversity and an essential habitat component for many wildlife species. However, compared to overstorey, information about understorey vegetation distribution is scant, available mainly over small areas or through imprecise large area maps from tedious and time-consuming field surveys. A practical approach to classifying understorey vegetation from remote sensing data is needed for more accurate habitat analyses and biodiversity estimates. As a case study, we mapped the spatial distribution of understorey bamboo in Wolong Nature Reserve (south-western China) using remote sensing data from a leaf-on or growing season. Training on a limited set of ground data and using widely available Landsat TM data as input, a nonlinear artificial neural network achieved a classification accuracy of 80% despite the presence of co-occurring mid-storey and understorey vegetation. These results suggest that the influences of understorey vegetation on remote sensing data are available to practical approaches to classifying understorey vegetation. The success here to map bamboo distribution has important implications for giant panda conservation and provides a good foundation for developing methods to map the spatial distributions of other understorey plant species.

Browse | Search : All Pubs | Next