Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says America must "unchoose" policies that have led to mass incarceration

Axinn says new data on campus rape will "allow students to see for themselves the full extent of this problem"

Frey says white population is growing in Detroit and other large cities


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 5 at noon, 6050 ISR
Colter Mitchell: Biological consequences of poverty

Jeffrey A. Smith photo

Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?

Publication Abstract

Smith, Jeffrey A., and P.E. Todd. 2005. "Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?" Journal of Econometrics, 125:305-353.

This paper applies cross-sectional and longitudinal propensity score matching estimators to data from the National Supported Work (NSW) Demonstration that have been previously analyzed by LaLonde (1986) and Dehejia and Wahba (1999, 2002). We find that estimates of the impact of NSW based on propensity score matching are highly sensitive to both the set of variables included in the scores and the particular analysis sample used in the estimation. Among the estimators we study, the difference-in-differences matching estimator performs the best. We attribute its performance to the fact that it eliminates potential sources of temporally invariant bias present in the NSW data, such as geographic mismatch between participants and nonparticipants and the use of a dependent variable measured in different ways for the two groups. Our analysis demonstrates that while propensity score matching is a potentially useful econometric tool, it does not represent a general solution to the evaluation problem. (C) 2004 Elsevier B.V. All rights reserved.

DOI:10.1016/j.jeconom.2004.04.011 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next