Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam discusses shifts in global population past and future

Thompson says LGBT social movement will bring new strength in push for tighter gun control

Yang says devalued pound will decrease resources for the families of migrant workers in Britain

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

An Extended General Location Model for Causal Inferences From Data Subject to Noncompliance and Missing Values

Publication Abstract

Peng, Y.H., R. J A Little, and Trivellore Raghunathan. 2004. "An Extended General Location Model for Causal Inferences From Data Subject to Noncompliance and Missing Values." Biometrics, 60:598-607.

Noncompliance is a common problem in experiments involving randomized assignment of treatments, and standard analyses based on intention-to-treat or treatment received have limitations. An attractive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and Rubin, 1996, Journal of American Statistical Association 91, 444-472). We propose an extended general location model to estimate the CACE from data with noncompliance and missing data in the outcome and in baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999, Biometrika 86, 365-379) missing-data mechanisms are developed. Inferences for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism. We also apply the method to the data from a job search intervention for unemployed workers.

Browse | Search : All Pubs | Next