Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"

Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care

Bachman says findings on teens' greater materialism, slipping work ethic should be interpreted with caution

Highlights

Arline Geronimus wins Excellence in Research Award from School of Public Health

Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"

U-M grad programs do well in latest USN&WR "Best" rankings

Sheldon Danziger named president of Russell Sage Foundation

Next Brown Bag



Back in September

Twitter Follow us 
on Twitter 

An Extended General Location Model for Causal Inferences From Data Subject to Noncompliance and Missing Values

Publication Abstract

Peng, Y.H., R. J A Little, and Trivellore Raghunathan. 2004. "An Extended General Location Model for Causal Inferences From Data Subject to Noncompliance and Missing Values." Biometrics, 60:598-607.

Noncompliance is a common problem in experiments involving randomized assignment of treatments, and standard analyses based on intention-to-treat or treatment received have limitations. An attractive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and Rubin, 1996, Journal of American Statistical Association 91, 444-472). We propose an extended general location model to estimate the CACE from data with noncompliance and missing data in the outcome and in baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999, Biometrika 86, 365-379) missing-data mechanisms are developed. Inferences for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism. We also apply the method to the data from a job search intervention for unemployed workers.

Browse | Search : All Pubs | Next