Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography


4/17/14: NIH announces new policy for resubmissions

2014 PAA Annual Meeting, May 1-3, Boston

PSC newsletter spring 2014 issue now available

Raghunathan appointed director of Survey Research Center

Next Brown Bag

PSC Brown Bags will return in the fall

An Extended General Location Model for Causal Inferences From Data Subject to Noncompliance and Missing Values

Publication Abstract

Peng, Y.H., R. J A Little, and Trivellore Raghunathan. 2004. "An Extended General Location Model for Causal Inferences From Data Subject to Noncompliance and Missing Values." Biometrics, 60:598-607.

Noncompliance is a common problem in experiments involving randomized assignment of treatments, and standard analyses based on intention-to-treat or treatment received have limitations. An attractive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and Rubin, 1996, Journal of American Statistical Association 91, 444-472). We propose an extended general location model to estimate the CACE from data with noncompliance and missing data in the outcome and in baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999, Biometrika 86, 365-379) missing-data mechanisms are developed. Inferences for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism. We also apply the method to the data from a job search intervention for unemployed workers.

Browse | Search : All Pubs | Next