Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Axinn says data show incidents of sexual assault start at 'very young age'

Miech on 'generational forgetting' about drug-use dangers

Impacts of H-1B visas: Lower prices and higher production - or lower wages and higher profits?

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, Feb 13, 2017, noon:
Daniel Almirall, "Getting SMART about adaptive interventions"

The Us National Comorbidity Survey Replication (Ncs-R) Design and Field Procedures

Publication Abstract

Kessler, R.C., P. Berglund, W.T. Chiu, O. Demler, Steven Heeringa, E. Hiripi, R. Jin, B.E. Pennell, E.E. Walters, A. Zaslavsky, and H. Zheng. 2004. "The Us National Comorbidity Survey Replication (Ncs-R) Design and Field Procedures." International Journal of Methods in Psychiatric Research, 13:69-92.

The National Comorbidity Survey Replication (NCS-R) is a survey of the prevalence and correlates of mental disorders in the US that was carried out between February 2001 and April 2003. Interviews were administered face-to-face in the homes of respondents, who were selected from a nationally representative multi-stage clustered area probability sample of households. A total of 9,282 interviews were completed in the main survey and an additional 554 short non-response interviews were completed with initial non-respondents. This paper describes the main features of the NCS-R design and field procedures, including information on fieldwork organization and procedures, sample design, weighting and considerations in the use of design-based versus model-based estimation. Empirical information is presented on non-response bias, design effect, and the trade-off between bias and efficiency in minimizing total mean-squared error of estimates by trimming weights.

Browse | Search : All Pubs | Next