Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Prescott says sex offender registries may increase recidivism by making offender re-assimilation impossible

Frey says rising numbers of younger minority voters mean Republicans must focus on fiscal not social issues

Work by Garces and Mickey-Pabello cited in NYT piece on lack of black physicians

Highlights

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Spring 2015 PSC newletter available now

Formal demography workshop and conference at UC Berkeley, August 17-21

Next Brown Bag

PSC Brown Bags will be back fall 2015


The Us National Comorbidity Survey Replication (Ncs-R) Design and Field Procedures

Publication Abstract

Kessler, R.C., P. Berglund, W.T. Chiu, O. Demler, Steven Heeringa, E. Hiripi, R. Jin, B.E. Pennell, E.E. Walters, A. Zaslavsky, and H. Zheng. 2004. "The Us National Comorbidity Survey Replication (Ncs-R) Design and Field Procedures." International Journal of Methods in Psychiatric Research, 13:69-92.

The National Comorbidity Survey Replication (NCS-R) is a survey of the prevalence and correlates of mental disorders in the US that was carried out between February 2001 and April 2003. Interviews were administered face-to-face in the homes of respondents, who were selected from a nationally representative multi-stage clustered area probability sample of households. A total of 9,282 interviews were completed in the main survey and an additional 554 short non-response interviews were completed with initial non-respondents. This paper describes the main features of the NCS-R design and field procedures, including information on fieldwork organization and procedures, sample design, weighting and considerations in the use of design-based versus model-based estimation. Empirical information is presented on non-response bias, design effect, and the trade-off between bias and efficiency in minimizing total mean-squared error of estimates by trimming weights.

Browse | Search : All Pubs | Next