Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography

Highlights

Raghunathan appointed director of Survey Research Center

PSC newsletter spring 2014 issue now available

Kusunoki wins faculty seed grant award from Institute for Research on Women and Gender

2014 PAA Annual Meeting, May 1-3, Boston

Next Brown Bag

Monday, April 21
Grant Miller: Managerial Incentives in Public Service Delivery

The Us National Comorbidity Survey Replication (Ncs-R) Design and Field Procedures

Publication Abstract

Kessler, R.C., P. Berglund, W.T. Chiu, O. Demler, Steven Heeringa, E. Hiripi, R. Jin, B.E. Pennell, E.E. Walters, A. Zaslavsky, and H. Zheng. 2004. "The Us National Comorbidity Survey Replication (Ncs-R) Design and Field Procedures." International Journal of Methods in Psychiatric Research, 13:69-92.

The National Comorbidity Survey Replication (NCS-R) is a survey of the prevalence and correlates of mental disorders in the US that was carried out between February 2001 and April 2003. Interviews were administered face-to-face in the homes of respondents, who were selected from a nationally representative multi-stage clustered area probability sample of households. A total of 9,282 interviews were completed in the main survey and an additional 554 short non-response interviews were completed with initial non-respondents. This paper describes the main features of the NCS-R design and field procedures, including information on fieldwork organization and procedures, sample design, weighting and considerations in the use of design-based versus model-based estimation. Empirical information is presented on non-response bias, design effect, and the trade-off between bias and efficiency in minimizing total mean-squared error of estimates by trimming weights.

Browse | Search : All Pubs | Next