Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Sastry's 10-year study of New Orleans Katrina evacuees shows demographic differences between returning and nonreturning

Stafford says less educated, smaller investors more likely to sell off stock and lock in losses during market downturn

Chen says job fit, job happiness can be achieved over time


Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

Trivellore Raghunathan photo

Combining Aggregate and Individual Level Data to Estimate an Individual Level Correlation Coefficient

Publication Abstract

Raghunathan, Trivellore, P.K. Diehr, and A.D. Cheadle. 2003. "Combining Aggregate and Individual Level Data to Estimate an Individual Level Correlation Coefficient." Journal of Educational and Behavioral Statistics, 28(1): 1-19.

Methods are developed that use aggregate data, possibly based on a large number of individuals, and individual level data, from a small fraction of individuals from the same or similar population, to eliminate ecological bias inherent in the analysis of aggregate data. The primary focus is on estimating the individual level correlation coefficient but the proposed methodology can be extended to estimate regression coefficients. Two approaches, the method of moments and the maximum likelihood, are developed for a bivariate distribution, but can be extended to a multivariate distribution. The method of moments develops a corrected estimate of the within-group covariance matrix, which is then used to estimate the individual level correlation and regression coefficients. The second method assumes bivariate normality and maximizes the combined likelihood function based on the two data sets. The maximum likelihood estimates are obtained using the EM-algorithm. A simulation study investigates the repeated sampling properties of these procedures in terms of bias and the mean square error of the point estimates and the actual coverage of the confidence intervals. The maximum likelihood estimates are almost unbiased and the confidence intervals are well calibrated for simulation conditions considered. The method of moments estimates have the same desirable properties for some simulation conditions. Under all conditions, the correlation coefficient between aggregate variables is severely biased as an estimate of the individual level correlation coefficient.

Browse | Search : All Pubs | Next