Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Owen-Smith says universities must demonstrate value of higher education

Armstrong says USC's removal of questions from a required Title IX training module may reflect student-administration relations

Fomby finds living with step- or half-siblings linked to higher aggression among 5 year olds

Highlights

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

Trivellore Raghunathan photo

Combining Aggregate and Individual Level Data to Estimate an Individual Level Correlation Coefficient

Publication Abstract

Raghunathan, Trivellore, P.K. Diehr, and A.D. Cheadle. 2003. "Combining Aggregate and Individual Level Data to Estimate an Individual Level Correlation Coefficient." Journal of Educational and Behavioral Statistics, 28(1): 1-19.

Methods are developed that use aggregate data, possibly based on a large number of individuals, and individual level data, from a small fraction of individuals from the same or similar population, to eliminate ecological bias inherent in the analysis of aggregate data. The primary focus is on estimating the individual level correlation coefficient but the proposed methodology can be extended to estimate regression coefficients. Two approaches, the method of moments and the maximum likelihood, are developed for a bivariate distribution, but can be extended to a multivariate distribution. The method of moments develops a corrected estimate of the within-group covariance matrix, which is then used to estimate the individual level correlation and regression coefficients. The second method assumes bivariate normality and maximizes the combined likelihood function based on the two data sets. The maximum likelihood estimates are obtained using the EM-algorithm. A simulation study investigates the repeated sampling properties of these procedures in terms of bias and the mean square error of the point estimates and the actual coverage of the confidence intervals. The maximum likelihood estimates are almost unbiased and the confidence intervals are well calibrated for simulation conditions considered. The method of moments estimates have the same desirable properties for some simulation conditions. Under all conditions, the correlation coefficient between aggregate variables is severely biased as an estimate of the individual level correlation coefficient.

Browse | Search : All Pubs | Next