Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Shapiro says Americans' low spending reflects "cruel lesson" about the dangers of debt

Highlights

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Michael R. Elliott photo

The Effect of Duration and Delay of Licensure on Risk of Crash: a Bayesian Analysis of Repeated Time-to-Event Measures

Publication Abstract

Elliott, Michael R., Trivellore Raghunathan, and J.T. Shope. 2002. "The Effect of Duration and Delay of Licensure on Risk of Crash: a Bayesian Analysis of Repeated Time-to-Event Measures." Journal of the American Statistical Association, 97:420-431.

The driving history records of a sample of 13,794 Michigan public school students were followed for up to 13 years from their initial time-of-license to determine the separate effects of duration of licensure and delay of licensure on risk of crash. We propose a subject-specific lognormal accelerated failure time to model the expected time-to-crash as a function of age at time of licensure, duration of licensure, and a set of control covariates. When multiple time-to-crash measures are observed for an individual, within-subject correlation can create substantial bias in the estimation of the effect of duration of licensure under an independence model, Generalized estimating equations provide consistent estimators of the variance when independence is misspecified but do not correct for this bias, Full maximum Likelihood models generally require numerical integration and differentiation, and in practice, parameter estimates were unattainable for the dataset of interest. We instead adopt a Bayesian approach, imputing the unobserved failure times and slope-intercept random effects to account for right censoring and between-subject variability. We implement this approach using a Gibbs algorithm, We assess model fit via posterior predictive distributions, Our approach also allows for subject-specific risk estimates based on subject-level history. We compare the repeated sampling properties of this approach with those obtained using some frequentist approaches, and find that duration of licensure is a stronger predictor of risk of crash than age of licensure.

Browse | Search : All Pubs | Next