Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Clinton's and Trump's appeal to voters viewed from perspective of Neidert and Lesthaeghe's SDT framework

Stephenson assessing in-home HIV testing and counseling for male couples

Thompson says mass incarceration causes collapse of Detroit neighborhoods

Highlights

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

AAUP reports on faculty compensation by category, affiliation, and academic rank

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Low Density Lipoprotein Particle Size and Risk of Early-Onset Myocardial Infarction in Women

Publication Abstract

Kamigaki, A.S., D.S. Siscovick, S.M. Schwartz, B.M. Psaty, K.L. Edwards, Trivellore Raghunathan, and M.A. Austin . 2001. "Low Density Lipoprotein Particle Size and Risk of Early-Onset Myocardial Infarction in Women." American Journal of Epidemiology, 153:939-945.

Previous studies of middle-aged men have shown a univariate association between low density lipoprotein (LDL) particle diameter (size) and coronary heart disease, but this association has yet to be examined in younger women. Using a subsample from a population-based case-control study of women living in western Washington State, the authors examined the association between LDL particle size and risk of early-onset myocardial infarction (MI) in 1992-1995. Gradient gel electrophoresis was used to characterize LDL subclasses in nonfasting blood samples from 72 MI cases and 159 controls aged 20-44 years. Mean LDL particle size in cases was significantly smaller compared with controls (26.4 vs. 26.9 nm, p < 0.001), with an odds ratio of 2.3 (p < 0.0001) for a 1-nm smaller LDL particle size. These results were independent of age, menopausal status, smoking, diabetes, hypertension, and LDL cholesterol (odds ratios = 1.9-2.3 for a l-nm smaller LDL particle size, all p < 0.02) but were not independent of body mass index, high density lipoprotein cholesterol, or triglyceride (odds ratios = 1.4, 1.4, and 1.1, respectively; all p > 0.05). Therefore, in age-adjusted analyses, smaller LDL particle size was associated with MI in young women, but the risk was attenuated after adjustments for metabolic factors related to both LDL particle size and MI.

Browse | Search : All Pubs | Next