Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography

Highlights

NIH announces new policy for resubmissions (4/17/14)

2014 PAA Annual Meeting, May 1-3, Boston

PSC newsletter spring 2014 issue now available

Raghunathan appointed director of Survey Research Center

Next Brown Bag


PSC Brown Bags will return in the fall

Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm

Publication Abstract

Bergen, K.M., Daniel Brown, J.F. Rutherford, and E.J. Gustafson. 2005. "Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm." Remote Sensing of Environment, 97(4): 434-446.

A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To derive useful land-cover change data using a heterogeneous dataset and to validate our results, we a) stratified the classification using predefined ecoregions, b) developed statistical relationships by ecoregion between land-cover proportions derived from the 1980 national-level classification and aggregate statistical data that were available in time series for all regions in the U.S., c) classified multi-temporal AVHRR data using a process that constrained the results to the estimated proportions of land covers in ecoregions within a multi-objective land allocation (MOLA) procedure, d) interpreted land cover from a sample of aerial photographs from 2000, following the protocols used to produce the 1980 classification for use in accuracy assessment of land cover and land-cover change data, and e) compared land cover and land-cover change results for the MOLA method with an unsupervised classification alone. Overall accuracies for the 2000 MOLA and unsupervised land-cover classifications were 85% and 82%, respectively. On average, the 1980-2000 land-cover change RMSEs were one order of magnitude lower using the MOLA method compared with those based on the unsupervised data. (C) 2005 Elsevier Inc. All rights reserved

DOI:10.1016/j.rse.2005.03.016 (Full Text)

Public Access Link

Country of focus: United States.

Browse | Search : All Pubs | Next