Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Murphy on extending health support via a smart phone and JITAI

New analysis counters Shaefer's finding that households living on $2/day/person rose post welfare reform

Former trainee Herbert says residential squatters may be a good thing

More News

Highlights

Michigan ranked #12 on Business Insider's list of 50 best American colleges

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm

Publication Abstract

Bergen, K.M., Daniel G. Brown, J.F. Rutherford, and E.J. Gustafson. 2005. "Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm." Remote Sensing of Environment, 97(4): 434-446.

A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To derive useful land-cover change data using a heterogeneous dataset and to validate our results, we a) stratified the classification using predefined ecoregions, b) developed statistical relationships by ecoregion between land-cover proportions derived from the 1980 national-level classification and aggregate statistical data that were available in time series for all regions in the U.S., c) classified multi-temporal AVHRR data using a process that constrained the results to the estimated proportions of land covers in ecoregions within a multi-objective land allocation (MOLA) procedure, d) interpreted land cover from a sample of aerial photographs from 2000, following the protocols used to produce the 1980 classification for use in accuracy assessment of land cover and land-cover change data, and e) compared land cover and land-cover change results for the MOLA method with an unsupervised classification alone. Overall accuracies for the 2000 MOLA and unsupervised land-cover classifications were 85% and 82%, respectively. On average, the 1980-2000 land-cover change RMSEs were one order of magnitude lower using the MOLA method compared with those based on the unsupervised data. (C) 2005 Elsevier Inc. All rights reserved

DOI:10.1016/j.rse.2005.03.016 (Full Text)

Public Access Link

Country of focus: United States of America.

Browse | Search : All Pubs | Next