Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stafford says exiting down stock market worsened position of low-income households

Bailey's work cited on growing income disparities in college enrollment and graduation

Murphy says mobile sensor data will allow adaptive interventions for maximizing healthy outcomes


PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Next Brown Bag

Monday, Nov 3
Melvin Stephens, Estimating Program Benefits

Minimax expected measure confidence sets for restricted location parameters

Publication Abstract

Evans, S.E., Ben Hansen, and P.B. Stark. 2005. "Minimax expected measure confidence sets for restricted location parameters." Bernoulli, 11:571-590.

We study confidence sets for a parameter θ∈Θ that have minimax expected measure among random sets with at least 1-α coverage probability. We characterize the minimax sets using duality, which helps to find confidence sets with small expected measure and to bound improvements in expected measure compared with standard confidence sets. We construct explicit minimax expected length confidence sets for a variety of one-dimensional statistical models, including the bounded normal mean with known and with unknown variance. For the bounded normal mean with unit variance, the minimax expected measure 95% confidence interval has a simple form for Θ= [-τ, τ] with τ≤3.25. For Θ= [-3, 3], the maximum expected length of the minimax interval is about 14% less than that of the minimax fixed-length affine confidence interval and about 16% less than that of the truncated conventional interval [X -1.96, X + 1.96] ∩[-3,3].

DOI:10.3150/bj/1126126761 (Full Text)

Browse | Search : All Pubs | Next