Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says America must "unchoose" policies that have led to mass incarceration

Axinn says new data on campus rape will "allow students to see for themselves the full extent of this problem"

Frey says white population is growing in Detroit and other large cities


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 5 at noon, 6050 ISR
Colter Mitchell: Biological consequences of poverty

Composite Causal Effects for Time-Varying Treatments and Time-Varying Outcomes

Publication Abstract

Download PDF versionBrand, Jennie, and Yu Xie. 2006. "Composite Causal Effects for Time-Varying Treatments and Time-Varying Outcomes." PSC Research Report No. 06-601. June 2006.

We develop an approach to conceptualizing causal effects in longitudinal settings with time-varying treatments and time-varying outcomes. The classic potential outcome approach to causal inference generally involves two time periods: units of analysis are exposed to one of two possible values of the causal variable, treatment or control, at a given point in time, and values for an outcome are assessed some time subsequent to exposure. In this paper, we develop a potential outcome approach for longitudinal situations in which both exposure to treatment and the effects of treatment are time-varying. In this longitudinal setting, the research interest centers on not two potential outcomes, but a matrix of potential outcomes, requiring a complicated conceptualization of many potential counterfactuals. Motivated by several sociological applications, we develop a simplification scheme – a composite causal effect estimand – with a forward looking sequential expectation that allows identification and estimation of effects with a number of possible solutions. Our approach is illustrated via an analysis of the effects of disability on subsequent employment status using panel data from the Wisconsin Longitudinal Study.

Browse | Search : All Pubs | Next