Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Johnston concerned declines in teen smoking threatened by e-cigarettes

Frey discusses book Diversity Explosion

Bailey and Dynarski's work cited in story on sending teams of poor kids to college


Apply for 2-year NICHD Postdoctoral Fellowships that begin September 2015

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Next Brown Bag

Monday, Jan 12
Filiz Garip, Changing Dynamics of Mexico-U.S. Migration

The False Discovery Rate: A Variable Selection Perspective

Publication Abstract

Ghosh, D., W. Chen, and Trivellore Raghunathan. 2006. "The False Discovery Rate: A Variable Selection Perspective." Journal of Statistical Planning and Inference, 136(8): 2668-2684.

In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to consider. In addition, we relate the risk properties of FDR-controlling procedures to those from variable selection procedures from a decision theoretic framework different from that considered by other authors.

DOI:10.1016/j.jspi.2004.10.024 (Full Text)

Browse | Search : All Pubs | Next