Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

Students from two worlds learn from one another in Morenoff's Inside-Out class

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

Next Brown Bag

Mon, April 10, 2017, noon:
Elizabeth Bruch

The False Discovery Rate: A Variable Selection Perspective

Publication Abstract

Ghosh, D., W. Chen, and Trivellore Raghunathan. 2006. "The False Discovery Rate: A Variable Selection Perspective." Journal of Statistical Planning and Inference, 136(8): 2668-2684.

In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to consider. In addition, we relate the risk properties of FDR-controlling procedures to those from variable selection procedures from a decision theoretic framework different from that considered by other authors.

DOI:10.1016/j.jspi.2004.10.024 (Full Text)

Browse | Search : All Pubs | Next