Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"
Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care
Arline Geronimus wins Excellence in Research Award from School of Public Health
Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"
U-M grad programs do well in latest USN&WR "Best" rankings
Sheldon Danziger named president of Russell Sage Foundation
Back in September
Ghosh, D., W. Chen, and Trivellore Raghunathan. 2006. "The False Discovery Rate: A Variable Selection Perspective." Journal of Statistical Planning and Inference, 136(8): 2668-2684.
In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to consider. In addition, we relate the risk properties of FDR-controlling procedures to those from variable selection procedures from a decision theoretic framework different from that considered by other authors.
DOI:10.1016/j.jspi.2004.10.024 (Full Text)
Browse | Search : All Pubs | Next