Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Groves keynote speaker at MIDAS symposium, Nov 15-16: "Big Data: Advancing Science, Changing the World"

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

The False Discovery Rate: A Variable Selection Perspective

Publication Abstract

Ghosh, D., W. Chen, and Trivellore Raghunathan. 2006. "The False Discovery Rate: A Variable Selection Perspective." Journal of Statistical Planning and Inference, 136(8): 2668-2684.

In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to consider. In addition, we relate the risk properties of FDR-controlling procedures to those from variable selection procedures from a decision theoretic framework different from that considered by other authors.

DOI:10.1016/j.jspi.2004.10.024 (Full Text)

Browse | Search : All Pubs | Next