Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Elliott co-PI on new study examining how early environment impacts children's health

Levy says ACA has helped increase rates of insured, but rates still lowest among poor

Bruch reveals key decision criteria in making first cuts on dating sites

More News

Highlights

U-M ranked #4 in USN&WR's top public universities

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

Mon, Oct 3 at noon:
Longevity, Education, & Income, Hoyt Bleakley

The False Discovery Rate: A Variable Selection Perspective

Publication Abstract

Ghosh, D., W. Chen, and Trivellore Raghunathan. 2006. "The False Discovery Rate: A Variable Selection Perspective." Journal of Statistical Planning and Inference, 136(8): 2668-2684.

In many scientific and medical settings, large-scale experiments are generating large quantities of data that lead to inferential problems involving multiple hypotheses. This has led to recent tremendous interest in statistical methods regarding the false discovery rate (FDR). Several authors have studied the properties involving FDR in a univariate mixture model setting. In this article, we turn the problem on its side; in this manuscript, we show that FDR is a by-product of Bayesian analysis of variable selection problem for a hierarchical linear regression model. This equivalence gives many Bayesian insights as to why FDR is a natural quantity to consider. In addition, we relate the risk properties of FDR-controlling procedures to those from variable selection procedures from a decision theoretic framework different from that considered by other authors.

DOI:10.1016/j.jspi.2004.10.024 (Full Text)

Browse | Search : All Pubs | Next