Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

COSSA makes 10 suggestions to next Administration for supporting and using social science research

Thompson says US prison population is 'staggeringly high' at about 1.5 million, despite 2% drop for 2015

Levy et al. find Michigan's Medicaid expansion boosted state's economy while increasing number of insured

More News

Highlights

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

Russell Sage 2-week workshop on social science genomics, June 11-23, 2017, Santa Barbara

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Characterizing location preferences in an exurban population: Implications for agent based modeling

Publication Abstract

Fernandez, L.E., Daniel G. Brown, R.W. Marans, and J.I. Nassauer. 2005. "Characterizing location preferences in an exurban population: Implications for agent based modeling." Environment and Planning B: Planning and Design, 32(6): 799-820.

Powerful computational tools are becoming available to represent the behavior of complex systems. Agent-based modeling, in particular, facilitates an examination of the system-level outcomes of the heterogeneous actions of a set of heterogeneous agents: for example, patterns of land-use and land-cover change, such as urban sprawl as a result of residential location decisions. These new tools create new demands for data, and empirical studies of the selection behavior of residents. Using resident responses from the 2001 Detroit Area Study survey, we compared two alternative approaches to characterizing the heterogeneous preferences of agents; both based on a factor analysis of resident responses to questions about their reasons for moving to their current location. We used cluster analysis to identify how many and what types of residents there are, grouped by similar preferences. We also evaluated the relationships between socioeconomic and demographic characteristics and location preferences using regression trees, and evaluated the fit of the relationship to determine the degree to which socioeconomic characteristics predict preferences. The results showed that the preferences of resident exurbans of single-family homes in the Detroit metropolitan area were heterogeneous and that distinct preference groups do exist in resident populations, but are not well characterized on the basis of simple socioeconomic and demographic variables. We conclude that, given the heterogeneous nature of preferences and a relatively limited number of preference groupings observed in the survey respondents, agent-based models simulating resident behavior should reflect this diversity in the population and incorporate distinct agent classes of empirically derived preference distributions.

DOI:10.1068/b3071 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next