Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stern, Novak, Harlow, and colleagues say compensation due Californians forcibly sterilized under eugenics laws

Burgard and Seelye find job insecurity linked to psychological distress among workers in later years

Former PSC trainee Jay Borchert parlays past incarceration and doctoral degree into pursuing better treatment of inmates

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

Tukey's gh distribution for multiple imputation

Publication Abstract

He, Y.L., and Trivellore Raghunathan. 2006. "Tukey's gh distribution for multiple imputation." American Statistician, 60(3): 251-256.

Tukey proposed a class of distributions, the g-and-h family (gh family), based on a transformation of a standard normal variable to accommodate different skewness and elongation in the distribution of variables arising in practical applications. It is easy to draw values from this distribution even though it is hard to explicitly state the probability density function. Given this flexibility, the gh family may be extremely useful in creating multiple imputations for missing data. This article demonstrates how this family, as well as its generalizations, can be used in the multiple imputation analysis of incomplete data. The focus of this article is on a scalar variable with missing values. In the absence of any additional information, data are missing completely at random, and hence the correct analysis is the complete-case analysis. Thus, the application of the gh multiple imputation to the scalar cases affords comparison with the correct analysis and with other model-based multiple imputation methods. Comparisons are made using simulated datasets and the data from a survey of adolescents ascertaining driving after drinking alcohol.

DOI:10.1198/000313006X126819 (Full Text)

Browse | Search : All Pubs | Next