Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"
Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care
Arline Geronimus wins Excellence in Research Award from School of Public Health
Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"
U-M grad programs do well in latest USN&WR "Best" rankings
Sheldon Danziger named president of Russell Sage Foundation
Back in September
He, Y.L., and Trivellore Raghunathan. 2006. "Tukey's gh distribution for multiple imputation." American Statistician, 60(3): 251-256.
Tukey proposed a class of distributions, the g-and-h family (gh family), based on a transformation of a standard normal variable to accommodate different skewness and elongation in the distribution of variables arising in practical applications. It is easy to draw values from this distribution even though it is hard to explicitly state the probability density function. Given this flexibility, the gh family may be extremely useful in creating multiple imputations for missing data. This article demonstrates how this family, as well as its generalizations, can be used in the multiple imputation analysis of incomplete data. The focus of this article is on a scalar variable with missing values. In the absence of any additional information, data are missing completely at random, and hence the correct analysis is the complete-case analysis. Thus, the application of the gh multiple imputation to the scalar cases affords comparison with the correct analysis and with other model-based multiple imputation methods. Comparisons are made using simulated datasets and the data from a survey of adolescents ascertaining driving after drinking alcohol.
DOI:10.1198/000313006X126819 (Full Text)
Browse | Search : All Pubs | Next