Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bleakley says reversing US trade policies could be 'recipe for slowdown'

ISR's Scott Page cited on 'bee swarm' social influence in crowd response to Trump

Novak, Geronimus, and Martinez-Cardoso find fear of immigration can affect Latino birth outcomes

More News


Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

More Highlights

Next Brown Bag

Mon, Feb 13, 2017 at noon:
Daniel Almirall

A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: Evaluation of an asthma education program

Publication Abstract

Kaciroti, N.A., Trivellore Raghunathan, M.A. Schork, N.M. Clark, and M. Gong. 2006. "A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: Evaluation of an asthma education program." Journal of the American Statistical Association, 101(474): 435-446.

Asthma, a chronic inflammatory disease of the airways, affects an estimated 6.3 million children under age 18 in the United States. A key to successful asthma management, and hence improved quality of life (QOL), calls for an active partnership between asthma patients and their health care providers. To foster this partnership, an intervention program was designed and evaluated using a randomized longitudinal study. The study focused on several outcomes where typically missing data remained a pervasive problem. We suspected that the underlying missing-data mechanism may not be ignorable. Thus here we present a method for analyzing clustered longitudinal data with missing values resulting from a nonignorable missing-data mechanism. Them transition Markov model with random effects was used to investigate changes in ordinal outcomes over time. A Bayesian pattern-mixture model with the flexibility to incorporate models for missing data in both outcome and time-varying covariates was used to model the nonignorable missing-data mechanism. The pattern-mixture model uses easy-to-understand parameters-namely, ratios of the cumulative odds across patterns with the complete-data pattern-as the reference pattern. Sensitivity analysis was performed using different prior distributions for the parameters. A fully Bayesian approach was derived by integrating over a class of prior distributions. The data from the Asthma Intervention Study were analyzed to explore the effect of the intervention program on improving QOL.

DOI:10.1198/016214505000001221 (Full Text)

Browse | Search : All Pubs | Next