Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

H. Luke Shaefer and colleagues argue for a universal child allowance

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

Unstable inferences? An examination of complex survey sample design adjustments using the Current Population Survey for health services research

Publication Abstract

Davern, Michael, Arthur Jones, James M. Lepkowski, Gestur Davidson, and Lynn A A. Blewett. 2006. "Unstable inferences? An examination of complex survey sample design adjustments using the Current Population Survey for health services research." Inquiry, 43(3): 283-297.

Statistical analysis of the Current Population Survey's Annual Social and Economic Supplement is used widely in health services research. However, the statistical evidence cited from the Current Population Survey (CPS) is not always consistent because researchers use a variety of methods to produce standard errors that are fundamental to significance tests. This analysis examines the 2002 Annual Social and Economic Supplement's (ASEC) estimates of national and state average income, national and state poverty rates, and national and state health insurance coverage rates. Findings show that the standard error estimates derived from the public use CPS data perform poorly compared with the survey design-based estimates derived from restricted internal data, and that the generalized variance parameters currently used by the U.S. Census Bureau in its ASEC reports and funding formula inputs perform erratically. Because the majority of published research (both by academics and Census Bureau analysts) does not make use of the survey design-based information available only on the internal ASEC data file, we argue that the Census Bureau ought to use alternative methods for its official ASEC reports. We also argue that for public use data the Census Bureau should produce a set of replicate weights for the ASEC or release a set of sample design variables that incorporate statistical "noise" to maintain respondent confidentiality (e.g., pseudo-primary sampling units) as other federal government surveys do. This is essential to make appropriate inferences using the ASEC data regarding statistical significance and estimate variance for health policy analysis.

Browse | Search : All Pubs | Next