Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Murphy says mobile sensor data will allow adaptive interventions for maximizing healthy outcomes

Frey comments on why sunbelt metro area economies are still struggling

Krause says having religious friends leads to gratitude, which is associated with better health

Highlights

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Next Brown Bag

Monday, Oct 20
No brown bag this week

Imputing for Late Reporting in the U.S. Current Employment Statistics Survey

Archived Abstract of Former PSC Researcher

Copeland, Kennon, and Richard L. Valliant. 2007. "Imputing for Late Reporting in the U.S. Current Employment Statistics Survey." Journal of Official Statistics, 23(1): 69--90.

Surveys of economic conditions are often published monthly to provide up-to-date measures of the state of a country’s economy. In establishment surveys, some sample units may not report in time to be included in the current month’s estimates, but eventually do report data. This late reporting can lead to revisions of estimates as more sample data become available. To maintain credibility, it is important that the size of revisions be kept as small as possible. We study this issue using the U.S. Current Employment Statistics (CES) survey. A model-based view of the CES weighted link relative estimator is used to identify potential bias due to model misspecification. An alternative approach, involving imputation for missing data, is used in an attempt to reduce the magnitude of revisions between preliminary and final estimates of employment for a month. The alternative, while not yielding statistically significant improvement in monthly revisions at the industry level, offers the potential for improved estimates for lower level aggregation.

Public Access Link

Browse | Search : All Pubs | Next