Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

Ben Hansen photo

Optimal full matching and related designs via network flows

Publication Abstract

Hansen, Ben, and S.O. Klopfer . 2006. "Optimal full matching and related designs via network flows." Journal of Computational and Graphical Statistics, 15(3): 609-627.

In the matched analysis of an observational study, confounding on covariates X is addressed by comparing members of a distinguished group (Z = 1) to controls (Z = 0) only when they belong to the same matched set. The better matchings, therefore, are those whose matched sets exhibit both dispersion in Z and uniformity in X. For dispersion in Z, pair matching is best, creating matched sets that are equally balanced between the groups; but actual data place limits, often severe limits, on matched pairs' uniformity in X. At the other extreme is full matching, the matched sets of which are as uniform in X as can be, while often so poorly dispersed in Z as to sacrifice efficiency. This article presents an algorithm for exploring the intermediate territory. Given requirements on matched sets' uniformity in X and dispersion in Z, the algorithm first decides the requirements' feasibility. In feasible cases, it furnishes a match that is optimal for X-uniformity among matches with Z-dispersion as stipulated. To illustrate, we describe the algorithm's use in a study comparing womens' to mens' working conditions; and we compare our method to a commonly used alternative, greedy matching, which is neither optimal nor as flexible but is algorithmically much simpler. The comparison finds meaningful advantages, in terms of both bias and efficiency, for our more studied approach.

DOI:10.1198/106186006X137047 (Full Text)

Browse | Search : All Pubs | Next