Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News


Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Ben Hansen photo

Optimal full matching and related designs via network flows

Publication Abstract

Hansen, Ben, and S.O. Klopfer . 2006. "Optimal full matching and related designs via network flows." Journal of Computational and Graphical Statistics, 15(3): 609-627.

In the matched analysis of an observational study, confounding on covariates X is addressed by comparing members of a distinguished group (Z = 1) to controls (Z = 0) only when they belong to the same matched set. The better matchings, therefore, are those whose matched sets exhibit both dispersion in Z and uniformity in X. For dispersion in Z, pair matching is best, creating matched sets that are equally balanced between the groups; but actual data place limits, often severe limits, on matched pairs' uniformity in X. At the other extreme is full matching, the matched sets of which are as uniform in X as can be, while often so poorly dispersed in Z as to sacrifice efficiency. This article presents an algorithm for exploring the intermediate territory. Given requirements on matched sets' uniformity in X and dispersion in Z, the algorithm first decides the requirements' feasibility. In feasible cases, it furnishes a match that is optimal for X-uniformity among matches with Z-dispersion as stipulated. To illustrate, we describe the algorithm's use in a study comparing womens' to mens' working conditions; and we compare our method to a commonly used alternative, greedy matching, which is neither optimal nor as flexible but is algorithmically much simpler. The comparison finds meaningful advantages, in terms of both bias and efficiency, for our more studied approach.

DOI:10.1198/106186006X137047 (Full Text)

Browse | Search : All Pubs | Next