Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Almirall says comparing SMART designs will increase treatment quality for children with autism

Thompson says America must "unchoose" policies that have led to mass incarceration

Alter says lack of access to administrative data is "big drag on research"


Knodel honored by Thailand's Chulalongkorn University

Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Simulating error propagation in land-cover change analysis: The implications of temporal dependence

Publication Abstract

Burnicki, A.C., Daniel Brown, and P. Goovaerts. 2007. "Simulating error propagation in land-cover change analysis: The implications of temporal dependence." Computers Environment and Urban Systems, 31:282-302.

We examined factors that affect the propagation of error in analyses of land-cover change classified from multi-temporal satellite imagery by simulating multiple versions of land-cover maps at two times, time-1 and time-2. The maps, each with two categories of land-cover, were produced to investigate three specific attributes that affect change-detection accuracy: (1) the pattern of change that produced a time-2 map from a time-1 map, (2) the spatial patterns of the errors that affected both the time-1 and time-2 maps, and (3) the level of temporal dependence (or correlation) between the patterns of error at each time. The simulated maps were analyzed in a change analysis to assess the relative performance of the error-perturbed maps in identifying and quantifying the known land-cover changes. Accuracy measures, such as overall percent correctly classified and user's accuracy, were calculated to describe the effects of land-cover errors on the accuracy of the change maps under each experimental setting. The results illustrate that temporal dependence of errors in land-cover maps influences both our ability to detect a variety of land-cover changes and the level of error in change maps. The study also illustrates how spatial simulation can be used to investigate patterns of error propagation where assumptions of spatial and/or temporal independence are violated.

DOI:10.1016/j.compenvurbsys.2006.07.005 (Full Text)

Browse | Search : All Pubs | Next