Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stephenson assessing in-home HIV testing and counseling for male couples

Thompson says mass incarceration causes collapse of Detroit neighborhoods

Liberal-conservative gap by education level growing in U.S.

Highlights

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

AAUP reports on faculty compensation by category, affiliation, and academic rank

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation

Publication Abstract

Duh, J.D., and Daniel G. Brown. 2007. "Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation." Computers Environment and Urban Systems, 31:253-281.

Spatial allocation is the process of assigning different attributes (e.g., land-use or land-cover) to spatial entities (e.g., map polygons or grid cells). It is an exercise that often requires the analysis of multiple, sometimes conflicting, objectives. Multi-objective spatial allocation problems often exhibit substantial computational complexity, especially when spatial pattern characteristics are specified as the allocation objectives. Optimization techniques that incorporate heuristics or knowledge-informed rules have been found to be more effective in solving spatial allocation problem. In this article, we (1) develop and demonstrate a knowledge-informed Pareto simulated annealing approach to tackle specifically multi-objective allocation problems that consider spatial patterns as objectives and (2) determine whether the knowledge-informed approach is more effective than standard Pareto simulation annealing in solving multi-objective spatial allocation problems. Four multi-objective spatial allocation problems were formulated in a gridded two-dimensional discrete space to benchmark the performance of our knowledge-informed algorithms and a standard Pareto simulated annealing algorithm. These four problems, each with two objectives, represent all combinations of cases in which there are (1) conflicting or concordant objectives and (2) two pattern objectives or one pattern objective and one non-pattern objective, representing objectives with similar or different degrees of difficulty. We generated 1200 sets of solutions, represented as allocation maps. Performance indices that measure the computational effectiveness and efficiency were developed for evaluation. The results suggest that the solutions generated by the knowledge-informed approach are more effective in approximating the set of Pareto optimal solutions than those generated by the standard Pareto simulated annealing.

DOI:10.1016/j.compenvurbsys.2006.08.002 (Full Text)

Browse | Search : All Pubs | Next