Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography

Highlights

NIH announces new policy for resubmissions (4/17/14)

2014 PAA Annual Meeting, May 1-3, Boston

PSC newsletter spring 2014 issue now available

Raghunathan appointed director of Survey Research Center

Next Brown Bag


PSC Brown Bags will return in the fall

Comparison of empirical methods for building agent-based models in land use science

Publication Abstract

Robinson, D.T., Daniel Brown, D.C. Parker, P. Schreinemachers, M.A. Janssen, M. Huigen, H. Wittmer, N. Gotts, P. Promburom, E. Irwin, T. Berger, F. Gatzweiler, and C. Barnaud. 2007. "Comparison of empirical methods for building agent-based models in land use science." Journal of Land Use Science, 2:31-55.

The use of agent-based models (ABMs) for investigating land-use science questions has been increasing dramatically over the last decade. Modelers have moved from ‘proofs of existence’ toy models to case-specific, multi-scaled, multi-actor, and data-intensive models of land-use and land-cover change. An international workshop, titled ‘Multi-Agent Modeling and Collaborative Planning—Method2Method Workshop’, was held in Bonn in 2005 in order to bring together researchers using different data collection approaches to informing agent-based models. Participants identified a typology of five approaches to empirically inform ABMs for land use science: sample surveys, participant observation, field and laboratory experiments, companion modeling, and GIS and remotely sensed data. This paper reviews these five approaches to informing ABMs, provides a corresponding case study describing the model usage of these approaches, the types of data each approach produces, the types of questions those data can answer, and an evaluation of the strengths and weaknesses of those data for use in an ABM.

DOI:10.1080/17474230701201349 (Full Text)

Browse | Search : All Pubs | Next