Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson casts doubt on the rehabilitative intentions of prison labor

Inglehart says European social democracy is a victim of its own success

Bound, Khanna, and Morales find multiple effects of H1-B visas on US tech industry

More News

Highlights

Heather Ann Thompson wins Bancroft Prize for History for 'Blood in the Water'

Michigan ranks in USN&WR top-10 grad schools for sociology, public health, labor economics, social policy, social psychology

Paula Lantz to speak at Women in Health Leadership Summit, March 24, 2:30-5:30 Michigan League

New site highlights research, data, and publications of Relationship Dynamics and Social Life study

More Highlights

Next Brown Bag

Mon, March 20, 2017, noon:
Dean Yang, Taken by Storm

Local spatial modeling of white-tailed deer distribution

Publication Abstract

Shi, H., E.J. Laurent, J. LeBouton, L. Racevskis, K.R. Hall, M. Donovan, M.B. Doepker, M.B. Walters, F. Lupi, and Jianguo Liu. 2006. "Local spatial modeling of white-tailed deer distribution." Ecological Modelling, 190(1-2): 171-189.

Complex spatial heterogeneity of ecological systems is difficult to capture and interpret using global models alone. For this reason, recent attention has been paid to local spatial modeling techniques. We used one local modeling approach, geographically weighted regression (GWR), to investigate the effects of local spatial heterogeneity on multivariate relationships of white-tailed deer distribution using land cover patch metrics and climate factors. The results of these analyses quantify differences in the contributions of model parameters to estimates of deer density over space. A GWR model with local kernel bandwidth was compared to a GWR model with global kernel bandwidth and an ordinary least-squares regression (OLS) model with the same parameters to evaluate their relative abilities in modeling deer distributions. The results indicated that the GWR models predicted deer density better than the traditional ordinary least-squares model and also provided useful information regarding local environmental processes affecting deer distribution. GWR model comparisons showed that the local kernel bandwidth GWR model was more realistic than the global kernel bandwidth GWR model, as the latter exaggerated local spatial variation. The parameter estimates and model statistics (e.g., model R-2) of the GWR models were mapped using geographic information systems (GIS) to illustrate local spatial variation in the regression relationship and to identify causes of large-scale model misspecifications and low estimation efficiencies.

DOI:10.1016/j.ecolmodel.2005.04.007 (Full Text)

Browse | Search : All Pubs | Next