Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Edin and Shaefer's book a call to action for Americans to deal with poverty

Weir says pain may underlie rise in suicide and substance-related deaths among white middle-aged Americans

Weitzman says China's one-child policy has had devastating effects on first-born daughters


MCubed opens for new round of seed funding, November 4-18

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

John Knodel honored by Thailand's Chulalongkorn University

Next Brown Bag

Monday, Dec 7 at noon, 6050 ISR-Thompson
Daniel Eisenberg, "Healthy Minds Network: Mental Health among College-Age Populations"

Local spatial modeling of white-tailed deer distribution

Publication Abstract

Shi, H., E.J. Laurent, J. LeBouton, L. Racevskis, K.R. Hall, M. Donovan, M.B. Doepker, M.B. Walters, F. Lupi, and Jianguo Liu. 2006. "Local spatial modeling of white-tailed deer distribution." Ecological Modelling, 190(1-2): 171-189.

Complex spatial heterogeneity of ecological systems is difficult to capture and interpret using global models alone. For this reason, recent attention has been paid to local spatial modeling techniques. We used one local modeling approach, geographically weighted regression (GWR), to investigate the effects of local spatial heterogeneity on multivariate relationships of white-tailed deer distribution using land cover patch metrics and climate factors. The results of these analyses quantify differences in the contributions of model parameters to estimates of deer density over space. A GWR model with local kernel bandwidth was compared to a GWR model with global kernel bandwidth and an ordinary least-squares regression (OLS) model with the same parameters to evaluate their relative abilities in modeling deer distributions. The results indicated that the GWR models predicted deer density better than the traditional ordinary least-squares model and also provided useful information regarding local environmental processes affecting deer distribution. GWR model comparisons showed that the local kernel bandwidth GWR model was more realistic than the global kernel bandwidth GWR model, as the latter exaggerated local spatial variation. The parameter estimates and model statistics (e.g., model R-2) of the GWR models were mapped using geographic information systems (GIS) to illustrate local spatial variation in the regression relationship and to identify causes of large-scale model misspecifications and low estimation efficiencies.

DOI:10.1016/j.ecolmodel.2005.04.007 (Full Text)

Browse | Search : All Pubs | Next