Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey and colleagues outline 10 trends showing scale of America's demographic transitions

Starr says surveys intended to predict recidivism assign higher risk to poor

Prescott and colleagues find incidence of noncompetes in U.S. labor force varies by job, state, worker education

Highlights

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

ISR addition wins LEED Gold Certification

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Next Brown Bag

Mon, March 9
Luigi Pistaferri, Consumption Inequality and Family Labor Supply

A new spatial-attribute weighting function for geographically weighted regression

Publication Abstract

Shi, H.J., L.J. Zhang, and Jianguo Liu. 2006. "A new spatial-attribute weighting function for geographically weighted regression." Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36(4): 996-1005.

In recent years, geographically weighted regression (GWR) has become popular for modeling spatial heterogeneity in a regression context. However, the current weighting function used in GWR only considers the geographical distances of trees in a stand, while the attributes (e.g., tree diameter) of the neighboring trees are totally ignored. In this study, we proposed a new weighting function that combines the "geographical space" and "attribute space" between the subject tree and its neighbors, such that (1) neighbors with greater geographical distances from the subject tree are assigned smaller weights, and (2) at a given geographical distance, neighboring trees with sizes that are similar to that of the subject tree are assigned larger weights. The results indicate that the GWR model with the new spatialattribute weighting function performs better than the one with the spatial weighting function in terms of model residuals and predictions for different spatial patterns of tree locations.

Browse | Search : All Pubs | Next