Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Geronimus says black-white differences in mortality "help silence black voices in the electorate"

Do universities need more conservative thinkers?

Starr critical of risk assessment scores for sentencing

Highlights

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

A new spatial-attribute weighting function for geographically weighted regression

Publication Abstract

Shi, H.J., L.J. Zhang, and Jianguo Liu. 2006. "A new spatial-attribute weighting function for geographically weighted regression." Canadian Journal of Forest Research, 36(4): 996-1005.

In recent years, geographically weighted regression (GWR) has become popular for modeling spatial heterogeneity in a regression context. However, the current weighting function used in GWR only considers the geographical distances of trees in a stand, while the attributes (e.g., tree diameter) of the neighboring trees are totally ignored. In this study, we proposed a new weighting function that combines the "geographical space" and "attribute space" between the subject tree and its neighbors, such that (1) neighbors with greater geographical distances from the subject tree are assigned smaller weights, and (2) at a given geographical distance, neighboring trees with sizes that are similar to that of the subject tree are assigned larger weights. The results indicate that the GWR model with the new spatialattribute weighting function performs better than the one with the spatial weighting function in terms of model residuals and predictions for different spatial patterns of tree locations.

Browse | Search : All Pubs | Next