Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stephenson says homophobia among gay men raises risk of intimate partner violence

Frey says having more immigrants with higher birth rates fills need in the US

Inglehart's work on the rise of populism cited in NYT

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

A new spatial-attribute weighting function for geographically weighted regression

Publication Abstract

Shi, H.J., L.J. Zhang, and Jianguo Liu. 2006. "A new spatial-attribute weighting function for geographically weighted regression." Canadian Journal of Forest Research, 36(4): 996-1005.

In recent years, geographically weighted regression (GWR) has become popular for modeling spatial heterogeneity in a regression context. However, the current weighting function used in GWR only considers the geographical distances of trees in a stand, while the attributes (e.g., tree diameter) of the neighboring trees are totally ignored. In this study, we proposed a new weighting function that combines the "geographical space" and "attribute space" between the subject tree and its neighbors, such that (1) neighbors with greater geographical distances from the subject tree are assigned smaller weights, and (2) at a given geographical distance, neighboring trees with sizes that are similar to that of the subject tree are assigned larger weights. The results indicate that the GWR model with the new spatialattribute weighting function performs better than the one with the spatial weighting function in terms of model residuals and predictions for different spatial patterns of tree locations.

Browse | Search : All Pubs | Next