Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Owen-Smith says universities must demonstrate value of higher education

Armstrong says USC's removal of questions from a required Title IX training module may reflect student-administration relations

Fomby finds living with step- or half-siblings linked to higher aggression among 5 year olds

Highlights

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

A new spatial-attribute weighting function for geographically weighted regression

Publication Abstract

Shi, H.J., L.J. Zhang, and Jianguo Liu. 2006. "A new spatial-attribute weighting function for geographically weighted regression." Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 36(4): 996-1005.

In recent years, geographically weighted regression (GWR) has become popular for modeling spatial heterogeneity in a regression context. However, the current weighting function used in GWR only considers the geographical distances of trees in a stand, while the attributes (e.g., tree diameter) of the neighboring trees are totally ignored. In this study, we proposed a new weighting function that combines the "geographical space" and "attribute space" between the subject tree and its neighbors, such that (1) neighbors with greater geographical distances from the subject tree are assigned smaller weights, and (2) at a given geographical distance, neighboring trees with sizes that are similar to that of the subject tree are assigned larger weights. The results indicate that the GWR model with the new spatialattribute weighting function performs better than the one with the spatial weighting function in terms of model residuals and predictions for different spatial patterns of tree locations.

Browse | Search : All Pubs | Next