Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Geronimus says black-white differences in mortality "help silence black voices in the electorate"

Do universities need more conservative thinkers?

Starr critical of risk assessment scores for sentencing

Highlights

Presentation on multilevel modeling using Stata, July 26th, noon, 6050 ISR

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

PSC Brown Bags
will resume fall 2016

A supplemental indicator of high-value or low-value spatial clustering

Publication Abstract

Zhang, T.L., and Ge Lin. 2006. "A supplemental indicator of high-value or low-value spatial clustering." Geographical Analysis, 38(2): 209-225.

Most test statistics for detecting spatial clustering cannot distinguish between low-value spatial clustering and high-value spatial clustering, and none is designed to explicitly detect high-value clustering, low-value clustering, or both. To fill this void in practice, we introduce an adjustment procedure that can supplement common two-sided spatial clustering tests so that a one-sided conclusion can be reached. The procedure is applied to Moran's I and Tango's C-G in both simulated and real-world spatial patterns. The results show that the adjustment procedure can account for the influence of low-value clusters on high-value clustering and vice versa. The procedure has little effect on the original global testing methods when there is no clustering. When there is a clustering tendency, the procedure can unambiguously distinguish the existence of high-value clusters or low-value clusters or both.

DOI:10.1111/j.0016-7363.2006.00683.x (Full Text)

Browse | Search : All Pubs | Next