Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Work by Brown, Jackson, Ryan cited in brief for UT Supreme Court case on race-conscious college admissions

Thompson says criminal justice policies led to creation of prison gangs like Aryan Brotherhood

Schmitz finds job loss before retirement age contributes to weight gain, especially in men

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

A supplemental indicator of high-value or low-value spatial clustering

Publication Abstract

Zhang, T.L., and Ge Lin. 2006. "A supplemental indicator of high-value or low-value spatial clustering." Geographical Analysis, 38(2): 209-225.

Most test statistics for detecting spatial clustering cannot distinguish between low-value spatial clustering and high-value spatial clustering, and none is designed to explicitly detect high-value clustering, low-value clustering, or both. To fill this void in practice, we introduce an adjustment procedure that can supplement common two-sided spatial clustering tests so that a one-sided conclusion can be reached. The procedure is applied to Moran's I and Tango's C-G in both simulated and real-world spatial patterns. The results show that the adjustment procedure can account for the influence of low-value clusters on high-value clustering and vice versa. The procedure has little effect on the original global testing methods when there is no clustering. When there is a clustering tendency, the procedure can unambiguously distinguish the existence of high-value clusters or low-value clusters or both.

DOI:10.1111/j.0016-7363.2006.00683.x (Full Text)

Browse | Search : All Pubs | Next