Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stern, Novak, Harlow, and colleagues say compensation due Californians forcibly sterilized under eugenics laws

Burgard and Seelye find job insecurity linked to psychological distress among workers in later years

Former PSC trainee Jay Borchert parlays past incarceration and doctoral degree into pursuing better treatment of inmates

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

Estimation of the proportion of overweight individuals in small areas - a robust extension of the Fay-Herriot model

Publication Abstract

Xie, D.W., Trivellore Raghunathan, and James M. Lepkowski. 2007. "Estimation of the proportion of overweight individuals in small areas - a robust extension of the Fay-Herriot model." Statistics in Medicine, 26(13): 2699-2715.

Hierarchical model Such as Fay-Herriot (FH) model is often used in small area estimation. The method might perform well overall but is vulnerable to outliers. We propose a robust extension of the FH model by assuming the area random effects follow a t distribution with an unknown degrees-of-freedom parameter. The inferences are constructed using a Bayesian framework. Monte Carlo Markov Chain (MCMC) such as Gibbs sampling and Metropolis-Hastings acceptance and rejection algorithms are used to obtain the joint posterior distribution of model parameters. The procedure is used to estimate the county-level proportion of overweight individuals from the 2003 public-use Behavioral Risk Factor Surveillance System (BRFSS) data. We also discuss two approaches for identifying outliers in the context of this application.

DOI:10.1002/sjm.2709 (Full Text)

Browse | Search : All Pubs | Next