Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stephenson assessing in-home HIV testing and counseling for male couples

Thompson says mass incarceration causes collapse of Detroit neighborhoods

Liberal-conservative gap by education level growing in U.S.

Highlights

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

AAUP reports on faculty compensation by category, affiliation, and academic rank

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Filling the gaps: Spatial interpolation of residential survey data in the estimation of neighborhood characteristics

Publication Abstract

Auchincloss, A.H., A.V. Roux, Daniel G. Brown, Trivellore Raghunathan, and C.A. Erdmann. 2007. "Filling the gaps: Spatial interpolation of residential survey data in the estimation of neighborhood characteristics." Epidemiology, 18(4): 469-478.

The measurement of area-level attributes remains a major challenge in studies of neighborhood health effects. Even when neighborhood survey data are collected, they necessarily have incomplete spatial coverage. We investigated whether interpolation of neighborhood survey data was aided by information on spatial dependencies and supplementary data. Neighborhood "availability of healthy foods" was measured in a population-based survey of 5186 persons in Baltimore, New York, and Forsyth County (North Carolina). The following supplementary data were compiled from Census 2000 and InfoUSA, Inc.: distance to supermarkets, density of supermarkets and fruit and vegetable stores, housing density, distance to a high-income area, and percent of households that do not own a vehicle. We compared 4 interpolation models (ordinary least squares, residual kriging, spatial error regression, and thin-plate splines) using error statistics and Pearson correlation coefficients (r) from repeated replications of cross-validations. There was positive spatial autocorrelation in neighborhood availability of healthy foods (by site, Moran coefficient range = 0.10-0.28; all P < 0.0001). Prediction performances were generally similar for the evaluated models (r [almost equal to] 0.35 for Baltimore and Forsyth; r [almost equal to] 0.54 for New York). Supplementary data accounted for much of the spatial autocorrelation and, thus, spatial modeling was only advantageous when spatial correlation was at least moderate. A variety of interpolation techniques will likely need to be utilized in order to increase the data available for examining health effects of residential environments. The most appropriate method will vary depending on the construct of interest, availability of relevant supplementary data, and types of observed spatial patterns.

DOI:10.1097/EDE.0b013e3180646320 (Full Text)

Public Access Link

Browse | Search : All Pubs | Next