Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

A hot-deck multiple imputation procedure for gaps in longitudinal data on recurrent events

Publication Abstract

Little, R.J., M. Yosef, K.C. Cain, B. Nan, and Sioban D. Harlow. 2008. "A hot-deck multiple imputation procedure for gaps in longitudinal data on recurrent events." Statistics in Medicine, 27(1): 103-120.

Hot-deck imputation offers advantages in reflecting salient features of data distributions in missing-data problems, but previous implementations have lacked the appeal associated with modern Bayesian statistical-computing techniques. We outline a strategy of iterative hot-deck multiple imputation with distance-based donor selection. With distance defined as a monotonic function of the difference in predictive means between cases, donors are chosen with probability inversely proportional to their distance from the donee. This method retains the implementation ease of ad hoc techniques, while incorporating the desirable features of Bayesian approaches. Special cases of our method include nearest-neighbor imputation and a simple random hot-deck. Iterating the procedure provides an analogy to Markov Chain Monte Carlo methods and is intended to mitigate dependence on starting values. Results from imputing missing values in a longitudinal depression treatment trial as well as a simulation study are presented. We evaluate how different definitions of distance, choices of starting values, the order in which variables are chosen for imputation, and the number of iterations impact inferences. We show that our measure of distance controls the tradeoff between bias and variance of our estimates. We find that inferences from the depression treatment trial are not sensitive to most definitions of distance. In addition, while differences exist between 1 iteration and 10 iterations, there are no meaningful differences between inferences based on 10 iterations and those based on 500 iterations. The choice of starting value did not have an impact on inferences but the order in which the variables were chosen for imputation was significant even after iteration.

DOI:10.1002/sim.3001 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next