Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Sastry's 10-year study of New Orleans Katrina evacuees shows demographic differences between returning and nonreturning

Stafford says less educated, smaller investors more likely to sell off stock and lock in losses during market downturn

Chen says job fit, job happiness can be achieved over time

Highlights

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

The multiple adaptations of multiple imputation

Publication Abstract

Reiter, J.P., and Trivellore Raghunathan. 2007. "The multiple adaptations of multiple imputation." Journal of the American Statistical Association, 102(480): 1462-1471.

Multiple imputation was first conceived as a tool that statistical agencies could use to handle nonresponse in large-sample public use surveys. In the last two decades, the multiple-imputation framework has been adapted for other statistical contexts. For example, individual researchers use multiple imputation to handle missing data in small samples, statistical agencies disseminate multiply-imputed data sets for purposes of protecting data confidentiality, and survey methodologists and epidemiologists use multiple imputation to correct for measurement errors. In some of these settings, Rubin's original rules for combining the point and variance estimates from the multiply-imputed data sets are not appropriate, because what is known-and thus the conditional expectations and variances used to derive inferential methods-differs from that in the missing-data context. These applications require new combining rules and methods of inference. In fact, more than 10 combining rules exist in the published literature. This article describes some of the main adaptations of the multiple-imputation framework, including missing data in large and small samples, data confidentiality, and measurement error. It reviews the combining rules for each setting and explains why they differ. Finally, it highlights research topics in extending the multiple-imputation framework.

DOI:10.1198/016214507000000932 (Full Text)

Browse | Search : All Pubs | Next