Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Inglehart says shaky job market for millennials has contributed to their disaffection

Stephenson says homophobia among gay men raises risk of intimate partner violence

Frey says having more immigrants with higher birth rates fills need in the US

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

The multiple adaptations of multiple imputation

Publication Abstract

Reiter, J.P., and Trivellore Raghunathan. 2007. "The multiple adaptations of multiple imputation." Journal of the American Statistical Association, 102(480): 1462-1471.

Multiple imputation was first conceived as a tool that statistical agencies could use to handle nonresponse in large-sample public use surveys. In the last two decades, the multiple-imputation framework has been adapted for other statistical contexts. For example, individual researchers use multiple imputation to handle missing data in small samples, statistical agencies disseminate multiply-imputed data sets for purposes of protecting data confidentiality, and survey methodologists and epidemiologists use multiple imputation to correct for measurement errors. In some of these settings, Rubin's original rules for combining the point and variance estimates from the multiply-imputed data sets are not appropriate, because what is known-and thus the conditional expectations and variances used to derive inferential methods-differs from that in the missing-data context. These applications require new combining rules and methods of inference. In fact, more than 10 combining rules exist in the published literature. This article describes some of the main adaptations of the multiple-imputation framework, including missing data in large and small samples, data confidentiality, and measurement error. It reviews the combining rules for each setting and explains why they differ. Finally, it highlights research topics in extending the multiple-imputation framework.

DOI:10.1198/016214507000000932 (Full Text)

Browse | Search : All Pubs | Next