Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Groves keynote speaker at MIDAS symposium, Nov 15-16: "Big Data: Advancing Science, Changing the World"

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Nov 7 at noon:

Philippa J. Clarke photo

Addressing data sparseness in contextual population research - Using cluster analysis to create synthetic neighborhoods

Publication Abstract

Clarke, Philippa J., and B. Wheaton. 2007. "Addressing data sparseness in contextual population research - Using cluster analysis to create synthetic neighborhoods." Sociological Methods and Research, 35(3): 311-351.

The use of multilevel modeling with data from population-based surveys is often limited by the small number of cases per Level 2 unit, prompting a recent trend in the neighborhood literature to apply cluster techniques to address the problem of data sparseness. In this study, the authors use Monte Carlo simulations to investigate the effects of marginal group sizes on multilevel model performance, bias, and efficiency. They then employ cluster analysis techniques to minimize data sparseness and examine the consequences in the simulations. They find that estimates of the fixed effects are robust at the extremes of data sparseness, while cluster analysis is an effective strategy to increase group size and prevent the overestimation of variance components. However, researchers should be cautious about the degree to which they use such clustering techniques due to the introduction of artificial within-group heterogeneity.

DOI:10.1177/0049124106292362 (Full Text)

Licensed Access Link

Public Access Link

Browse | Search : All Pubs | Next