Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Almirall says comparing SMART designs will increase treatment quality for children with autism

Thompson says America must "unchoose" policies that have led to mass incarceration

Alter says lack of access to administrative data is "big drag on research"


Knodel honored by Thailand's Chulalongkorn University

Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Philippa J. Clarke photo

Addressing data sparseness in contextual population research - Using cluster analysis to create synthetic neighborhoods

Publication Abstract

Clarke, Philippa J., and B. Wheaton. 2007. "Addressing data sparseness in contextual population research - Using cluster analysis to create synthetic neighborhoods." Sociological Methods & Research, 35(3): 311-351.

The use of multilevel modeling with data from population-based surveys is often limited by the small number of cases per Level 2 unit, prompting a recent trend in the neighborhood literature to apply cluster techniques to address the problem of data sparseness. In this study, the authors use Monte Carlo simulations to investigate the effects of marginal group sizes on multilevel model performance, bias, and efficiency. They then employ cluster analysis techniques to minimize data sparseness and examine the consequences in the simulations. They find that estimates of the fixed effects are robust at the extremes of data sparseness, while cluster analysis is an effective strategy to increase group size and prevent the overestimation of variance components. However, researchers should be cautious about the degree to which they use such clustering techniques due to the introduction of artificial within-group heterogeneity.

DOI:10.1177/0049124106292362 (Full Text)

Licensed Access Link

Public Access Link

Browse | Search : All Pubs | Next