Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Seefeldt says 'consumption smoothing' behavior makes long-term recovery more difficult for economically vulnerable

Seefeldt criticizes Kansas legislation restricting daily cash withdrawals from public assistance funds

Prescott says sex offender registries may increase recidivism by making offender re-assimilation impossible

Highlights

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Spring 2015 PSC newletter available now

Formal demography workshop and conference at UC Berkeley, August 17-21

Next Brown Bag

PSC Brown Bags will be back fall 2015


Philippa J. Clarke photo

Addressing data sparseness in contextual population research - Using cluster analysis to create synthetic neighborhoods

Publication Abstract

Clarke, Philippa J., and B. Wheaton. 2007. "Addressing data sparseness in contextual population research - Using cluster analysis to create synthetic neighborhoods." Sociological Methods & Research, 35(3): 311-351.

The use of multilevel modeling with data from population-based surveys is often limited by the small number of cases per Level 2 unit, prompting a recent trend in the neighborhood literature to apply cluster techniques to address the problem of data sparseness. In this study, the authors use Monte Carlo simulations to investigate the effects of marginal group sizes on multilevel model performance, bias, and efficiency. They then employ cluster analysis techniques to minimize data sparseness and examine the consequences in the simulations. They find that estimates of the fixed effects are robust at the extremes of data sparseness, while cluster analysis is an effective strategy to increase group size and prevent the overestimation of variance components. However, researchers should be cautious about the degree to which they use such clustering techniques due to the introduction of artificial within-group heterogeneity.

DOI:10.1177/0049124106292362 (Full Text)

Licensed Access Link

Public Access Link

Browse | Search : All Pubs | Next