Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Axinn says data show incidents of sexual assault start at 'very young age'

Miech on 'generational forgetting' about drug-use dangers

Impacts of H-1B visas: Lower prices and higher production - or lower wages and higher profits?

More News


Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, Feb 13, 2017, noon:
Daniel Almirall, "Getting SMART about adaptive interventions"

Time to include time to death? The future of health care expenditure predictions

Publication Abstract

Stearns, S.C., and Edward Norton. 2004. "Time to include time to death? The future of health care expenditure predictions." Health Economics, 13(4): 315-327.

Government projections of future health care expenditures - a great concern given the aging baby-boom generation - are based on econometric regressions that control explicitly for age but do not control for end-of-life expenditures. Because expenditures increase dramatically on average at the end of life, predictions of future cost distributions based on regressions that omit time to death as an explanatory variable will be biased upward (or, more explicitly, the coefficients on age will be biased upward) if technology or other social factors continue to prolong life. Although health care expenditure predictions for a current sample will not be biased, predictions for future cohorts with greater longevity will be biased upwards, and the magnitude of the bias will increase as the expected longevity increases. We explore the empirical implications of incorporating time to death in longitudinal models of health expenditures for the purpose of predicting future expenditures. Predictions from a simple model that excludes time to death and uses current life tables are 9% higher than from an expanded model controlling for time to death. The bias increases to 15% when using projected life tables for 2020. The predicted differences between the models are sufficient to justify reassessment of the value of inclusion of time to death in models for predicting health care expenditures. Copyright (C) 2003 John Wiley Sons, Ltd.

Browse | Search : All Pubs | Next