Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Survival analysis in land change science: Integrating with GIScience to address temporal complexities

Publication Abstract

An, L., and Daniel G. Brown. 2008. "Survival analysis in land change science: Integrating with GIScience to address temporal complexities." Annals of the Association of American Geographers, 98(2): 323-344.

Although land changes are characterized by dimensionality in both space and time, and a multitude of methods and techniques have been developed to model them, the temporal dimension has seldom been adequately addressed by commonly used methods. In the context of temporal complexities represented in different space-time data models, this study aims to establish a framework for applying survival analysis theory and techniques to geographical land change modeling. Our efforts focus on (1) introducing basic concepts in survival analysis and their connections to space-time data commonly used in land change analysis, (2) using survival metrics to describe temporal patterns that are not easily detected by other methods, and (3) applying survival analysis methods to disclose effects of varying temporal patterns and uncertainties. Our findings suggest that survival analysis, coupled with geographic information systems (GIS) and remote sensing data, can effectively disclose relationships in land changes, and in many instances excel in shedding light on the temporal patterns of land changes.

Browse | Search : All Pubs | Next