Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

Survival analysis in land change science: Integrating with GIScience to address temporal complexities

Publication Abstract

An, L., and Daniel G. Brown. 2008. "Survival analysis in land change science: Integrating with GIScience to address temporal complexities." Annals of the Association of American Geographers, 98(2): 323-344.

Although land changes are characterized by dimensionality in both space and time, and a multitude of methods and techniques have been developed to model them, the temporal dimension has seldom been adequately addressed by commonly used methods. In the context of temporal complexities represented in different space-time data models, this study aims to establish a framework for applying survival analysis theory and techniques to geographical land change modeling. Our efforts focus on (1) introducing basic concepts in survival analysis and their connections to space-time data commonly used in land change analysis, (2) using survival metrics to describe temporal patterns that are not easily detected by other methods, and (3) applying survival analysis methods to disclose effects of varying temporal patterns and uncertainties. Our findings suggest that survival analysis, coupled with geographic information systems (GIS) and remote sensing data, can effectively disclose relationships in land changes, and in many instances excel in shedding light on the temporal patterns of land changes.

Browse | Search : All Pubs | Next