Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Kruger says reports of phantom mobile phone ringing/vibrating more common among anxious

Stafford says too early to say whether stock market declines will curtail Americans' spending

Eisenberg says many colleges now train campus personnel to spot and refer troubled college students

Highlights

Call for papers: Conference on Integrating Genetics and the Social Sciences, Oct 21-22, 2016, CU-Boulder

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

A false-discovery-rate-based loss framework for selection of interactions

Publication Abstract

Chen, W., D. Ghosh, Trivellore Raghunathan, and D.J. Sargent. 2008. "A false-discovery-rate-based loss framework for selection of interactions." Statistics in Medicine, 27(11): 2004-2021.

Interaction effects have been consistently found important in explaining the variation in outcomes in many scientific research fields. Yet, in practice, variable selection including interactions is complicated due to the limited sample size, conflicting philosophies regarding model interpretability, and accompanying amplified multiple-testing problems. The lack of statistically sound algorithms for automatic variable selection with interactions has discouraged activities in exploring important interaction effects. In this article, we investigated issues of selecting interactions from three aspects: (1) What is the model space to be searched? (2) How is the hypothesis-testing performed? (3) How to address the multiple-testing issue? We propose loss functions and corresponding decision rules that control FDR in a Bayesian context. Properties of the decision rules are discussed and their performance in terms of power and FDR is compared through simulations. Methods are illustrated on data from a colorectal cancer study assessing the chemotherapy treatments and data from a diffuse large-B-cell lymphoma study assessing the prognostic effect of gene expressions. Copyright (c) 2007 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3118 (Full Text)

Browse | Search : All Pubs | Next