Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

A false-discovery-rate-based loss framework for selection of interactions

Publication Abstract

Chen, W., D. Ghosh, Trivellore Raghunathan, and D.J. Sargent. 2008. "A false-discovery-rate-based loss framework for selection of interactions." Statistics in Medicine, 27(11): 2004-2021.

Interaction effects have been consistently found important in explaining the variation in outcomes in many scientific research fields. Yet, in practice, variable selection including interactions is complicated due to the limited sample size, conflicting philosophies regarding model interpretability, and accompanying amplified multiple-testing problems. The lack of statistically sound algorithms for automatic variable selection with interactions has discouraged activities in exploring important interaction effects. In this article, we investigated issues of selecting interactions from three aspects: (1) What is the model space to be searched? (2) How is the hypothesis-testing performed? (3) How to address the multiple-testing issue? We propose loss functions and corresponding decision rules that control FDR in a Bayesian context. Properties of the decision rules are discussed and their performance in terms of power and FDR is compared through simulations. Methods are illustrated on data from a colorectal cancer study assessing the chemotherapy treatments and data from a diffuse large-B-cell lymphoma study assessing the prognostic effect of gene expressions. Copyright (c) 2007 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3118 (Full Text)

Browse | Search : All Pubs | Next