Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Elliott co-PI on new study examining how early environment impacts children's health

Levy says ACA has helped increase rates of insured, but rates still lowest among poor

Bruch reveals key decision criteria in making first cuts on dating sites

More News

Highlights

U-M ranked #4 in USN&WR's top public universities

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

Mon, Oct 3 at noon:
Longevity, Education, & Income, Hoyt Bleakley

A false-discovery-rate-based loss framework for selection of interactions

Publication Abstract

Chen, W., D. Ghosh, Trivellore Raghunathan, and D.J. Sargent. 2008. "A false-discovery-rate-based loss framework for selection of interactions." Statistics in Medicine, 27(11): 2004-2021.

Interaction effects have been consistently found important in explaining the variation in outcomes in many scientific research fields. Yet, in practice, variable selection including interactions is complicated due to the limited sample size, conflicting philosophies regarding model interpretability, and accompanying amplified multiple-testing problems. The lack of statistically sound algorithms for automatic variable selection with interactions has discouraged activities in exploring important interaction effects. In this article, we investigated issues of selecting interactions from three aspects: (1) What is the model space to be searched? (2) How is the hypothesis-testing performed? (3) How to address the multiple-testing issue? We propose loss functions and corresponding decision rules that control FDR in a Bayesian context. Properties of the decision rules are discussed and their performance in terms of power and FDR is compared through simulations. Methods are illustrated on data from a colorectal cancer study assessing the chemotherapy treatments and data from a diffuse large-B-cell lymphoma study assessing the prognostic effect of gene expressions. Copyright (c) 2007 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3118 (Full Text)

Browse | Search : All Pubs | Next