Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Weir's 2009 report on NFL brain injuries got more attention than neurological findings published in 2005

Edin and Shaefer's book a call to action for Americans to deal with poverty

Weir says pain may underlie rise in suicide and substance-related deaths among white middle-aged Americans


MCubed opens for new round of seed funding, November 4-18

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

John Knodel honored by Thailand's Chulalongkorn University

Next Brown Bag

Monday, Dec 7 at noon, 6050 ISR-Thompson
Daniel Eisenberg, "Healthy Minds Network: Mental Health among College-Age Populations"

A false-discovery-rate-based loss framework for selection of interactions

Publication Abstract

Chen, W., D. Ghosh, Trivellore Raghunathan, and D.J. Sargent. 2008. "A false-discovery-rate-based loss framework for selection of interactions." Statistics in Medicine, 27(11): 2004-2021.

Interaction effects have been consistently found important in explaining the variation in outcomes in many scientific research fields. Yet, in practice, variable selection including interactions is complicated due to the limited sample size, conflicting philosophies regarding model interpretability, and accompanying amplified multiple-testing problems. The lack of statistically sound algorithms for automatic variable selection with interactions has discouraged activities in exploring important interaction effects. In this article, we investigated issues of selecting interactions from three aspects: (1) What is the model space to be searched? (2) How is the hypothesis-testing performed? (3) How to address the multiple-testing issue? We propose loss functions and corresponding decision rules that control FDR in a Bayesian context. Properties of the decision rules are discussed and their performance in terms of power and FDR is compared through simulations. Methods are illustrated on data from a colorectal cancer study assessing the chemotherapy treatments and data from a diffuse large-B-cell lymphoma study assessing the prognostic effect of gene expressions. Copyright (c) 2007 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3118 (Full Text)

Browse | Search : All Pubs | Next