Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"

Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care

Bachman says findings on teens' greater materialism, slipping work ethic should be interpreted with caution

Highlights

Arline Geronimus wins Excellence in Research Award from School of Public Health

Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"

U-M grad programs do well in latest USN&WR "Best" rankings

Sheldon Danziger named president of Russell Sage Foundation

Next Brown Bag



Back in September

Twitter Follow us 
on Twitter 

Competing Hazards with Shared Unmeasured Risk Factors

Publication Abstract

Hill, Daniel H., William Axinn, and Arland Thornton. 1993. "Competing Hazards with Shared Unmeasured Risk Factors." Sociological Methodology, 23: 245-77.

Most competing hazards models are based on the rather strong assumption that alternative destinations are stochastically independent. Individual- specific unmeasured risk factors that are shared by two or more alternatives are, as a result, ruled out. The present paper develops a generalization of the standard discrete-time competing hazards model that allows for the types of stochastic dependencies resulting from shared unmeasured risk factors. An empirical example is provided using the process by which young women form their first conjugal residential union, with married and unmarried cohabitation representing the competing alternatives. The results suggest considerable and significant similarity of the alternatives in terms of the unmeasurables. It is also shown that, as a result, the independence assumption leads to substantially biased estimates of the net marriage and net cohabitation survival functions. While the model does require a temporal independence assumption, Monte Carlo simulations indicate that the biases introduced by violations of this assumption are confined primarily to the estimates for time-varying covariates. Estimates for other covariates and the cross-destination correlation coefficient, itself, are relatively robust.

Licensed Access Link

Browse | Search : All Pubs | Next