Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

Competing Hazards with Shared Unmeasured Risk Factors

Publication Abstract

Hill, Daniel H., William Axinn, and Arland Thornton. 1993. "Competing Hazards with Shared Unmeasured Risk Factors." Sociological Methodology, 23: 245-77.

Most competing hazards models are based on the rather strong assumption that alternative destinations are stochastically independent. Individual- specific unmeasured risk factors that are shared by two or more alternatives are, as a result, ruled out. The present paper develops a generalization of the standard discrete-time competing hazards model that allows for the types of stochastic dependencies resulting from shared unmeasured risk factors. An empirical example is provided using the process by which young women form their first conjugal residential union, with married and unmarried cohabitation representing the competing alternatives. The results suggest considerable and significant similarity of the alternatives in terms of the unmeasurables. It is also shown that, as a result, the independence assumption leads to substantially biased estimates of the net marriage and net cohabitation survival functions. While the model does require a temporal independence assumption, Monte Carlo simulations indicate that the biases introduced by violations of this assumption are confined primarily to the estimates for time-varying covariates. Estimates for other covariates and the cross-destination correlation coefficient, itself, are relatively robust.

Licensed Access Link

Browse | Search : All Pubs | Next