Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Competing Hazards with Shared Unmeasured Risk Factors

Publication Abstract

Hill, Daniel H., William Axinn, and Arland Thornton. 1993. "Competing Hazards with Shared Unmeasured Risk Factors." Sociological Methodology, 23: 245-77.

Most competing hazards models are based on the rather strong assumption that alternative destinations are stochastically independent. Individual- specific unmeasured risk factors that are shared by two or more alternatives are, as a result, ruled out. The present paper develops a generalization of the standard discrete-time competing hazards model that allows for the types of stochastic dependencies resulting from shared unmeasured risk factors. An empirical example is provided using the process by which young women form their first conjugal residential union, with married and unmarried cohabitation representing the competing alternatives. The results suggest considerable and significant similarity of the alternatives in terms of the unmeasurables. It is also shown that, as a result, the independence assumption leads to substantially biased estimates of the net marriage and net cohabitation survival functions. While the model does require a temporal independence assumption, Monte Carlo simulations indicate that the biases introduced by violations of this assumption are confined primarily to the estimates for time-varying covariates. Estimates for other covariates and the cross-destination correlation coefficient, itself, are relatively robust.

Licensed Access Link

Browse | Search : All Pubs | Next