Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Axinn says data show incidents of sexual assault start at 'very young age'

Miech on 'generational forgetting' about drug-use dangers

Impacts of H-1B visas: Lower prices and higher production - or lower wages and higher profits?

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, Feb 13, 2017, noon:
Daniel Almirall, "Getting SMART about adaptive interventions"

Social epidemiology and complex system dynamic modelling as applied to health behaviour and drug use research

Publication Abstract

Galea, Sandro, C. Hall, and George A. Kaplan. 2009. "Social epidemiology and complex system dynamic modelling as applied to health behaviour and drug use research." International Journal of Drug Policy, 20(3): 209-16.

A social epidemiologic perspective considers factors at multiple levels of influence (e.g., social networks, neighbourhoods, states) that may individually or jointly affect health and health behaviour. This provides a useful lens through which to understand the production of health behaviours in general, and drug use in particular. However, the analytic models that are commonly applied in population health sciences limit the inference we are able to draw about the determination of health behaviour by factors, likely interrelated, across levels of influence. Complex system dynamic modelling techniques may be useful in enabling the adoption of a social epidemiologic approach in health behaviour and drug use research. We provide an example of a model that aims to incorporate factors at multiple levels of influence in understanding drug dependence. We conclude with suggestions about future directions in the field and how such models may serve as virtual laboratories for policy experiments aimed at improving health behaviour.

DOI:10.1016/j.drugpo.2008.08.005 (Full Text)

PMCID: PMC2782722. (Pub Med Central)

Public Access Link

Browse | Search : All Pubs | Next