Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shapiro says Twitter-based employment index provides real-time accuracy

Xie says internet censorship in China often reflects local officials' concerns

Cheng finds marriage may not be best career option for women

Highlights

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Susan Murphy named Distinguished University Professor

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

Next Brown Bag


PSC Brown Bags will return in the fall

A Bayesian model for longitudinal count data with non-ignorable dropout

Publication Abstract

Kaciroti, N.A., Trivellore Raghunathan, M.A. Schork, and N.M. Clark. 2008. "A Bayesian model for longitudinal count data with non-ignorable dropout." Journal of the Royal Statistical Society Series C-Applied Statistics, 57:521-534.

Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self-regulation and was evaluated by a randomized longitudinal study. The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern-mixture model to evaluate the outcome of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern-mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters. We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non-ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis.

DOI:10.1111/j.1467-9876.2008.00629.x (Full Text)

PMCID: PMC2975948. (Pub Med Central)

Browse | Search : All Pubs | Next