Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography

Highlights

2014 PAA Annual Meeting, May 1-3, Boston

PSC newsletter spring 2014 issue now available

Raghunathan appointed director of Survey Research Center

Kusunoki wins faculty seed grant award from Institute for Research on Women and Gender

Next Brown Bag


PSC Brown Bags will return in the fall

A Bayesian model for longitudinal count data with non-ignorable dropout

Publication Abstract

Kaciroti, N.A., Trivellore Raghunathan, M.A. Schork, and N.M. Clark. 2008. "A Bayesian model for longitudinal count data with non-ignorable dropout." Journal of the Royal Statistical Society Series C-Applied Statistics, 57:521-534.

Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self-regulation and was evaluated by a randomized longitudinal study. The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern-mixture model to evaluate the outcome of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern-mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters. We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non-ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis.

DOI:10.1111/j.1467-9876.2008.00629.x (Full Text)

PMCID: PMC2975948. (Pub Med Central)

Browse | Search : All Pubs | Next