Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson casts doubt on the rehabilitative intentions of prison labor

Inglehart says European social democracy is a victim of its own success

Bound, Khanna, and Morales find multiple effects of H1-B visas on US tech industry

More News

Highlights

Heather Ann Thompson wins Bancroft Prize for History for 'Blood in the Water'

Michigan ranks in USN&WR top-10 grad schools for sociology, public health, labor economics, social policy, social psychology

Paula Lantz to speak at Women in Health Leadership Summit, March 24, 2:30-5:30 Michigan League

New site highlights research, data, and publications of Relationship Dynamics and Social Life study

More Highlights

Next Brown Bag

Mon, March 20, 2017, noon:
Dean Yang, Taken by Storm

A Bayesian model for longitudinal count data with non-ignorable dropout

Publication Abstract

Kaciroti, N.A., Trivellore Raghunathan, M.A. Schork, and N.M. Clark. 2008. "A Bayesian model for longitudinal count data with non-ignorable dropout." Journal of the Royal Statistical Society: Series C (Applied Statistics), 57:521-534.

Asthma is an important chronic disease of childhood. An intervention programme for managing asthma was designed on principles of self-regulation and was evaluated by a randomized longitudinal study. The study focused on several outcomes, and, typically, missing data remained a pervasive problem. We develop a pattern-mixture model to evaluate the outcome of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern-mixture models are not generally identifiable as no data may be available to estimate a number of model parameters. Sensitivity analyses are performed by imposing structures on the unidentified parameters. We propose a parameterization which permits sensitivity analyses on clustered longitudinal count data that have missing values due to non-ignorable missing data mechanisms. This parameterization is expressed as ratios between event rates across missing data patterns and the observed data pattern and thus measures departures from an ignorable missing data mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over different prior distributions on the event ratios. This model has the advantage of providing an intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism in the final analysis.

DOI:10.1111/j.1467-9876.2008.00629.x (Full Text)

PMCID: PMC2975948. (Pub Med Central)

Browse | Search : All Pubs | Next