Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News


Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts

Publication Abstract

Kaciroti, N.A., M.A. Schork, Trivellore Raghunathan, and S. Julius. 2009. "A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts." Statistics in Medicine, 28(4): 572-585.

Intention-to-treat (ITT) analysis is commonly used in randomized clinical trials. However, the use of ITT analysis presents a challenge: how to deal with Subjects who drop Out. Here we focus oil randomized trials where the primary outcome is a binary endpoint. Several approaches are available for including the dropout subject ill the ITT analysis, mainly chosen prior to unblinding the Study. These approaches reduce the potential bias due to breaking the randomization code.. However, the validity of the results will highly depend oil untestable assumptions; about the dropout mechanism. Thus, it is important to evaluate the sensitivity of the results across different missing-data mechanisms. We propose here a Bayesian pattern-mixture model for ITT analysis of binary outcomes with dropouts that applies over different types of missing-data mechanisms. We introduce it new parameterization to identify the model, which is then used for sensitivity analysis. The parameterization is defined as the odds ratio of having all endpoint between the Subjects who dropped Out and those who completed the study. Such parameterization is intuitive and easy 10 use ill sensitivity analysis; it also incorporates most of the available methods as special cases. The model is applied to TRial Of Preventing HYpertension. Copyright (C) 2008 John Wiley & Sons. Ltd.

DOI:10.1002/sim.3494 (Full Text)

Browse | Search : All Pubs | Next