Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey and colleagues outline 10 trends showing scale of America's demographic transitions

Starr says surveys intended to predict recidivism assign higher risk to poor

Prescott and colleagues find incidence of noncompetes in U.S. labor force varies by job, state, worker education

Highlights

ISR addition wins LEED Gold Certification

Call for Proposals: Small Grants for Research Using PSID Data. Due March 2, 2015

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Next Brown Bag

Mon, March 9
Luigi Pistaferri, Consumption Inequality and Family Labor Supply

A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts

Publication Abstract

Kaciroti, N.A., M.A. Schork, Trivellore Raghunathan, and S. Julius. 2009. "A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts." Statistics in Medicine, 28(4): 572-585.

Intention-to-treat (ITT) analysis is commonly used in randomized clinical trials. However, the use of ITT analysis presents a challenge: how to deal with Subjects who drop Out. Here we focus oil randomized trials where the primary outcome is a binary endpoint. Several approaches are available for including the dropout subject ill the ITT analysis, mainly chosen prior to unblinding the Study. These approaches reduce the potential bias due to breaking the randomization code.. However, the validity of the results will highly depend oil untestable assumptions; about the dropout mechanism. Thus, it is important to evaluate the sensitivity of the results across different missing-data mechanisms. We propose here a Bayesian pattern-mixture model for ITT analysis of binary outcomes with dropouts that applies over different types of missing-data mechanisms. We introduce it new parameterization to identify the model, which is then used for sensitivity analysis. The parameterization is defined as the odds ratio of having all endpoint between the Subjects who dropped Out and those who completed the study. Such parameterization is intuitive and easy 10 use ill sensitivity analysis; it also incorporates most of the available methods as special cases. The model is applied to TRial Of Preventing HYpertension. Copyright (C) 2008 John Wiley & Sons. Ltd.

DOI:10.1002/sim.3494 (Full Text)

Browse | Search : All Pubs | Next