Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

Students from two worlds learn from one another in Morenoff's Inside-Out class

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

Next Brown Bag

Mon, April 10, 2017, noon:
Elizabeth Bruch

Good item or bad-can latent class analysis tell? the utility of latent class analysis for the evaluation of survey questions

Archived Abstract of Former PSC Researcher

Kreuter, F., T. Yan, and Roger Tourangeau. 2008. "Good item or bad-can latent class analysis tell? the utility of latent class analysis for the evaluation of survey questions." Journal of the Royal Statistical Society: Series A (Statistics in Society), 171:723-738.

Latent class analysis has been used to model measurement error, to identify flawed survey questions and to estimate mode effects. Using data from a survey of University of Maryland alumni together with alumni records, we evaluate this technique to determine its usefulness for detecting bad questions in the survey context. Two sets of latent class analysis models are applied in this evaluation: latent class models with three indicators and latent class models with two indicators under different assumptions about prevalence and error rates. Our results indicated that the latent class analysis approach produced good qualitative results for the latent class models-the item that the model deemed the worst was the worst according to the true scores. However, the approach yielded weaker quantitative estimates of the error rates for a given item.

DOI:10.1111/j.1467-985X.2007.00530.x (Full Text)

Browse | Search : All Pubs | Next