Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

H. Luke Shaefer and colleagues argue for a universal child allowance

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

Michael R. Elliott photo

Model Averaging Methods for Weight Trimming

Publication Abstract

Elliott, Michael R. 2008. "Model Averaging Methods for Weight Trimming." Journal of Official Statistics, 24(4): 517-540.

In sample surveys where sampled units have unequal probabilities of inclusion, associations between the inclusion probabilities and the statistic of interest can induce bias. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights, which can introduce undesirable variability in statistics such as the population mean or linear regression estimates. Weight trimming reduces large weights to a fixed maximum value, reducing variability but introducing bias. Most standard approaches are ad-hoc in that they do not use the data to optimize bias-variance tradeoffs. This manuscript develops variable selection models, termed “weight pooling” models, that extend weight trimming procedures in a Bayesian model averaging framework to produce “data driven” weight trimming estimators. We develop robust yet efficient models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC2783643. (Pub Med Central)

Public Access Link

Browse | Search : All Pubs | Next