Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Former trainee Herbert says residential squatters may be a good thing

Work by Couper, Farley et al. shows impact of racial composition on neighborhood choice

Thompson details killings and shaping of official narrative in 1971 Attica prison uprising

More News

Highlights

Michigan ranked #12 on Business Insider's list of 50 best American colleges

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Michael R. Elliott photo

Model Averaging Methods for Weight Trimming

Publication Abstract

Elliott, Michael R. 2008. "Model Averaging Methods for Weight Trimming." Journal of Official Statistics, 24(4): 517-540.

In sample surveys where sampled units have unequal probabilities of inclusion, associations between the inclusion probabilities and the statistic of interest can induce bias. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights, which can introduce undesirable variability in statistics such as the population mean or linear regression estimates. Weight trimming reduces large weights to a fixed maximum value, reducing variability but introducing bias. Most standard approaches are ad-hoc in that they do not use the data to optimize bias-variance tradeoffs. This manuscript develops variable selection models, termed “weight pooling” models, that extend weight trimming procedures in a Bayesian model averaging framework to produce “data driven” weight trimming estimators. We develop robust yet efficient models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC2783643. (Pub Med Central)

Public Access Link

Browse | Search : All Pubs | Next