Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Sastry's 10-year study of New Orleans Katrina evacuees shows demographic differences between returning and nonreturning

Stafford says less educated, smaller investors more likely to sell off stock and lock in losses during market downturn

Chen says job fit, job happiness can be achieved over time

Highlights

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

Michael R. Elliott photo

Model Averaging Methods for Weight Trimming

Publication Abstract

Elliott, Michael R. 2008. "Model Averaging Methods for Weight Trimming." Journal of Official Statistics, 24(4): 517-540.

In sample surveys where sampled units have unequal probabilities of inclusion, associations between the inclusion probabilities and the statistic of interest can induce bias. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights, which can introduce undesirable variability in statistics such as the population mean or linear regression estimates. Weight trimming reduces large weights to a fixed maximum value, reducing variability but introducing bias. Most standard approaches are ad-hoc in that they do not use the data to optimize bias-variance tradeoffs. This manuscript develops variable selection models, termed “weight pooling” models, that extend weight trimming procedures in a Bayesian model averaging framework to produce “data driven” weight trimming estimators. We develop robust yet efficient models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC2783643. (Pub Med Central)

Public Access Link

Browse | Search : All Pubs | Next