Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Burgard and Seelye find job insecurity linked to psychological distress among workers in later years

Former PSC trainee Jay Borchert parlays past incarceration and doctoral degree into pursuing better treatment of inmates

Inglehart says shaky job market for millennials has contributed to their disaffection

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

Michael R. Elliott photo

Model Averaging Methods for Weight Trimming

Publication Abstract

Elliott, Michael R. 2008. "Model Averaging Methods for Weight Trimming." Journal of Official Statistics, 24(4): 517-540.

In sample surveys where sampled units have unequal probabilities of inclusion, associations between the inclusion probabilities and the statistic of interest can induce bias. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights, which can introduce undesirable variability in statistics such as the population mean or linear regression estimates. Weight trimming reduces large weights to a fixed maximum value, reducing variability but introducing bias. Most standard approaches are ad-hoc in that they do not use the data to optimize bias-variance tradeoffs. This manuscript develops variable selection models, termed “weight pooling” models, that extend weight trimming procedures in a Bayesian model averaging framework to produce “data driven” weight trimming estimators. We develop robust yet efficient models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC2783643. (Pub Med Central)

Public Access Link

Browse | Search : All Pubs | Next