Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Shapiro says Americans' low spending reflects "cruel lesson" about the dangers of debt

Highlights

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Michael R. Elliott photo

Model Averaging Methods for Weight Trimming

Publication Abstract

Elliott, Michael R. 2008. "Model Averaging Methods for Weight Trimming." Journal of Official Statistics, 24(4): 517-540.

In sample surveys where sampled units have unequal probabilities of inclusion, associations between the inclusion probabilities and the statistic of interest can induce bias. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights, which can introduce undesirable variability in statistics such as the population mean or linear regression estimates. Weight trimming reduces large weights to a fixed maximum value, reducing variability but introducing bias. Most standard approaches are ad-hoc in that they do not use the data to optimize bias-variance tradeoffs. This manuscript develops variable selection models, termed “weight pooling” models, that extend weight trimming procedures in a Bayesian model averaging framework to produce “data driven” weight trimming estimators. We develop robust yet efficient models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC2783643. (Pub Med Central)

Public Access Link

Browse | Search : All Pubs | Next