Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam says tightening global labor market good for American workers

Johnston says e-cigs may reverse two-decades of progress on smoking reduction

Mueller-Smith finds incarceration increases the likelihood of committing more, and more serious, crimes

Highlights

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Next Brown Bag

PSC Brown Bags will be back fall 2015


Michael R. Elliott photo

Model Averaging Methods for Weight Trimming in Generalized Linear Regression Models

Publication Abstract

Elliott, Michael R. 2009. "Model Averaging Methods for Weight Trimming in Generalized Linear Regression Models." Journal of Official Statistics, 25(1): 1-20.

In sample surveys where units have unequal probabilities of inclusion, associations between the inclusion probability and the statistic of interest can induce bias in unweighted estimates. This is true even in regression models, where the estimates of the population slope may be biased if the underlying mean model is misspecified or the sampling is nonignorable. Weights equal to the inverse of the probability of inclusion are often used to counteract this bias. Highly disproportional sample designs have highly variable weights; weight trimming reduces large weights to a maximum value, reducing variability but introducing bias. Most standard approaches are ad hoc in that they do not use the data to optimize bias-variance trade-offs. This article uses Bayesian model averaging to create "data driven" weight trimming estimators. We extend previous results for linear regression models (Elliott 2008) to generalized linear regression models, developing robust models that approximate fully-weighted estimators when bias correction is of greatest importance, and approximate unweighted estimators when variance reduction is critical.

PMCID: PMC3530169. (Pub Med Central)

Browse | Search : All Pubs | Next