Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Shapiro says Americans' low spending reflects "cruel lesson" about the dangers of debt

Highlights

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Susan A. Murphy photo

Screening Experiments for Developing Dynamic Treatment Regimes

Publication Abstract

Murphy, Susan A., and D. Bingham. 2009. "Screening Experiments for Developing Dynamic Treatment Regimes." Journal of the American Statistical Association, 104(485): 391-408.

Dynamic treatment regimes are time-varying treatments that individualize sequences of treatments to the patient. The construction of dynamic treatment regimes is challenging because a patient will be eligible for some treatment components only if he has not responded (or has responded) to other treatment components. In addition, there are usually a number of potentially useful treatment components and combinations thereof. In this article, we propose new methodology for identifying promising components and screening out negligible ones. First, we define causal factorial effects for treatment components that may be applied sequentially to a patient. Second, we propose experimental designs that can be used to study the treatment components. Surprisingly, modifications can be made to (fractional) factorial designs-more commonly found in the engineering statistics literature-for screening in this setting. Furthermore, we provide an analysis model that can be used to screen the factorial effects. We demonstrate the proposed methodology using examples motivated in the literature and also via a simulation study.

DOI:10.1198/jasa.2009.0119 (Full Text)

PMCID: PMC2892819. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next