Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Almirall says comparing SMART designs will increase treatment quality for children with autism

Thompson says America must "unchoose" policies that have led to mass incarceration

Alter says lack of access to administrative data is "big drag on research"


Knodel honored by Thailand's Chulalongkorn University

Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Susan A. Murphy photo

Screening Experiments for Developing Dynamic Treatment Regimes

Publication Abstract

Murphy, Susan A., and D. Bingham. 2009. "Screening Experiments for Developing Dynamic Treatment Regimes." Journal of the American Statistical Association, 104(485): 391-408.

Dynamic treatment regimes are time-varying treatments that individualize sequences of treatments to the patient. The construction of dynamic treatment regimes is challenging because a patient will be eligible for some treatment components only if he has not responded (or has responded) to other treatment components. In addition, there are usually a number of potentially useful treatment components and combinations thereof. In this article, we propose new methodology for identifying promising components and screening out negligible ones. First, we define causal factorial effects for treatment components that may be applied sequentially to a patient. Second, we propose experimental designs that can be used to study the treatment components. Surprisingly, modifications can be made to (fractional) factorial designs-more commonly found in the engineering statistics literature-for screening in this setting. Furthermore, we provide an analysis model that can be used to screen the factorial effects. We demonstrate the proposed methodology using examples motivated in the literature and also via a simulation study.

DOI:10.1198/jasa.2009.0119 (Full Text)

PMCID: PMC2892819. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next