Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Almirall says comparing SMART designs will increase treatment quality for children with autism

Thompson says America must "unchoose" policies that have led to mass incarceration

Alter says lack of access to administrative data is "big drag on research"


Knodel honored by Thailand's Chulalongkorn University

Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Daniel Almirall photo

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation

Publication Abstract

Almirall, Daniel, Thomas Ten Have, and Susan A. Murphy. 2010. "Structural Nested Mean Models for Assessing Time-Varying Effect Moderation." Biometrics, 66(1): 131-139.

This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment (or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins' structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented and discussed: The first is a proposed two-stage regression estimator. The second is Robins' G-estimator. The results of a small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the bias-variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from a depression study.

DOI:10.1111/j.1541-0420.2009.01238.x (Full Text)

PMCID: PMC2875310. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next