Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Clinton's and Trump's appeal to voters viewed from perspective of Neidert and Lesthaeghe's SDT framework

Stephenson assessing in-home HIV testing and counseling for male couples

Thompson says mass incarceration causes collapse of Detroit neighborhoods

Highlights

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

AAUP reports on faculty compensation by category, affiliation, and academic rank

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Acute Effects of Ambient Particulate Matter on Blood Pressure Differential Effects Across Urban Communities

Publication Abstract

Dvonch, J.T., S. Kannan, A.J. Schulz, G.J. Keeler, G. Mentz, James S. House, A. Benjamin, P. Max, R.L. Bard, and R.D. Brook. 2009. "Acute Effects of Ambient Particulate Matter on Blood Pressure Differential Effects Across Urban Communities." Hypertension, 53(5): 853-859.

Recent studies have suggested a link between exposure to ambient particulate matter <2.5 mu m in diameter (PM2.5) and adverse cardiovascular outcomes. The objective of this study was to examine the effects of differing community-level exposure to PM2.5 on daily measures of blood pressure (BP) among an adult population. During the period May 2002 through April 2003, BP was examined at 2 time points for 347 adults residing in 3 distinct communities of Detroit, Michigan. Exposure to PM2.5 was assessed in each community during this period, along with multivariate associations between PM2.5 and BP. In models combining all 3 of the communities, PM2.5 was significantly associated with systolic blood pressure; a 10-mu g/m(3) increase in daily PM2.5 was associated with a 3.2-mm Hg increase in systolic blood pressure (P=0.05). However, in models that added a location interaction, larger effects were observed for systolic blood pressure within the community with highest PM2.5 levels; a 10-mu g/m(3) increase in daily PM2.5 was associated with a 8.6-mm Hg increase in systolic blood pressure (P=0.01). We also found young age (<55 years) and not taking BP medications to be significant predictors of increased BP effects. Among those taking BP medications, the PM2.5 effect on BP appeared to be mitigated, partially explaining the age effect, because those participants <55 years of age were less likely to take BP medications. Short-term increases in exposure to ambient PM2.5 are associated with acute increases in BP in adults, especially within communities with elevated levels of exposure. (Hypertension. 2009; 53: 853-859.)

DOI:10.1161/hypertensionaha.108.123877 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next