Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Yang comments on importance of migrant remittances to future of recipient families

Frey says America's black population is changing with recent immigration

Bailey and Danziger's War on Poverty book reviewed in NY Review of Books

Highlights

Hicken wins 2015 UROP Outstanding Research Mentor Award

U-M ranked #1 in Sociology of Population by USN&WR's "Best Graduate Schools"

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

ISR addition wins LEED Gold Certification

Next Brown Bag

Mon, May 18
Lois Verbrugge, Disability Experience & Measurement

On the Performance of Sequential Regression Multiple Imputation Methods with Non Normal Error Distributions

Publication Abstract

He, Y.L., and Trivellore Raghunathan. 2009. "On the Performance of Sequential Regression Multiple Imputation Methods with Non Normal Error Distributions." Communications in Statistics-Simulation and Computation, 38(4): 856-883.

Sequential regression multiple imputation has emerged as a popular approach for handling incomplete data with complex features. In this approach, imputations for each missing variable are produced based on a regression model using other variables as predictors in a cyclic manner. Normality assumption is frequently imposed for the error distributions in the conditional regression models for continuous variables, despite that it rarely holds in real scenarios. We use a simulation study to investigate the performance of several sequential regression imputation methods when the error distribution is flat or heavy tailed. The methods evaluated include the sequential normal imputation and its several extensions which adjust for non normal error terms. The results show that all methods perform well for estimating the marginal mean and proportion, as well as the regression coefficient when the error distribution is flat or moderately heavy tailed. When the error distribution is strongly heavy tailed, all methods retain their good performances for the mean and the adjusted methods have robust performances for the proportion; but all methods can have poor performances for the regression coefficient because they cannot accommodate the extreme values well. We caution against the mechanical use of sequential regression imputation without model checking and diagnostics.

DOI:10.1080/03610910802677191 (Full Text)

Browse | Search : All Pubs | Next