Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News


Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

Propagating error in land-cover-change analyses: impact of temporal dependence under increased thematic complexity

Publication Abstract

Burnicki, A.C., Daniel G. Brown, and P. Goovaerts. 2010. "Propagating error in land-cover-change analyses: impact of temporal dependence under increased thematic complexity." International Journal of Geographical Information Science, 24(7): 1043-1060.

We examined the impact of temporal dependence between patterns of error in classified time-series imagery through a simulation modeling approach. This research extended the land-cover-change simulation model we previously developed to investigate: (1) the assumption of temporal independence between patterns of error in classified time-series imagery; and (2) the interaction of patterns of change and patterns of error in a post-classification change analysis. In this research, the thematic complexity of the classified land-cover maps was increased by increasing the number of simulated land-cover classes. Simulating maps with increased categorical resolution permitted the incorporation of: (1) higher-order, more complex spatial and temporal interactions between land-cover classes; and (2) patterns of error that better reproduce the complex error interactions that often occur in time-series classified imagery. The overall modeling framework was divided into two primary components: (1) generation of a map representing true change; and (2) generation of a suite of change maps that had been perturbed by specific patterns of error. All component maps in the model were produced using simulated annealing, which enabled us to create a series of map realizations with user-defined spatial and temporal patterns. Comparing the true map of change to the error-perturbed maps of change using accuracy assessment statistics showed that increasing the temporal dependence between classification errors did not improve the accuracy of resulting maps of change when the categorical scale of the land-cover classified maps was increased. The increased structural complexity within the time series of maps effectively inhibited the impact of temporal dependence. However, results demonstrated that there are interactions between patterns of error and patterns of change in a post-classification change analysis. These interactions played a major role in determining the accuracy associated with the maps of change.

DOI:10.1080/13658810903279008 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next