Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shapiro says Twitter-based employment index provides real-time accuracy

Xie says internet censorship in China often reflects local officials' concerns

Cheng finds marriage may not be best career option for women

Highlights

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Susan Murphy named Distinguished University Professor

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

Next Brown Bag


PSC Brown Bags will return in the fall

Inference for non-regular parameters in optimal dynamic treatment regimes

Publication Abstract

Chakraborty, B., Susan A. Murphy, and V. Strecher. 2010. "Inference for non-regular parameters in optimal dynamic treatment regimes." Statistical Methods in Medical Research, 19(3): 317-343.

A dynamic treatment regime is a set of decision rules, one per stage, each taking a patient's treatment and covariate history as input, and outputting a recommended treatment. In the estimation of the optimal dynamic treatment regime from longitudinal data, the treatment effect parameters at any stage prior to the last can be non-regular under certain distributions of the data. This results in biased estimates and invalid confidence intervals for the treatment effect parameters. In this article, we discuss both the problem of non-regularity, and available estimation methods. We provide an extensive simulation study to compare the estimators in terms of their ability to lead to valid confidence intervals under a variety of non-regular scenarios. Analysis of a data set from a smoking cessation trial is provided as an illustration.

DOI:10.1177/0962280209103013 (Full Text)

PMCID: PMC2891316. (Pub Med Central)

Browse | Search : All Pubs | Next