Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Almirall says comparing SMART designs will increase treatment quality for children with autism

Thompson says America must "unchoose" policies that have led to mass incarceration

Alter says lack of access to administrative data is "big drag on research"


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Inference for non-regular parameters in optimal dynamic treatment regimes

Publication Abstract

Chakraborty, B., Susan A. Murphy, and V. Strecher. 2010. "Inference for non-regular parameters in optimal dynamic treatment regimes." Statistical Methods in Medical Research, 19(3): 317-343.

A dynamic treatment regime is a set of decision rules, one per stage, each taking a patient's treatment and covariate history as input, and outputting a recommended treatment. In the estimation of the optimal dynamic treatment regime from longitudinal data, the treatment effect parameters at any stage prior to the last can be non-regular under certain distributions of the data. This results in biased estimates and invalid confidence intervals for the treatment effect parameters. In this article, we discuss both the problem of non-regularity, and available estimation methods. We provide an extensive simulation study to compare the estimators in terms of their ability to lead to valid confidence intervals under a variety of non-regular scenarios. Analysis of a data set from a smoking cessation trial is provided as an illustration.

DOI:10.1177/0962280209103013 (Full Text)

PMCID: PMC2891316. (Pub Med Central)

Browse | Search : All Pubs | Next